Los números de Newman-Conway es el que genera la siguiente secuencia entera.
1 1 2 2 3 4 4 4 5 6 7 7….. y sigue la siguiente fórmula recursiva.
P(n) = P(P(n - 1)) + P(n - P(n - 1))
Dado un número n, imprima n términos de
ejemplos de secuencias de Newman-Conway:
Input : 13 Output : 1 1 2 2 3 4 4 4 5 6 7 7 8 Input : 20 Output : 1 1 2 2 3 4 4 4 5 6 7 7 8 8 8 8 9 10 11 12
C++
// C++ Program to print n terms // of Newman-Conway Sequence #include <bits/stdc++.h> using namespace std; // Function to find // the n-th element void sequence(int n) { // Declare array to store sequence int f[n + 1]; f[0] = 0; f[1] = 1; f[2] = 1; cout << f[1] << " " << f[2] << " "; for (int i = 3; i <= n; i++) { f[i] = f[f[i - 1]] + f[i - f[i - 1]]; cout << f[i] << " "; } } // Driver Program int main() { int n = 13; sequence(n); return 0; }
Java
// Java Program to print n terms // of Newman-Conway Sequence class GFG { // Function to find // the n-th element public static void sequence(int n) { // Declare array to store sequence int f[] = new int[n + 1]; f[0] = 0; f[1] = 1; f[2] = 1; System.out.print( f[1] + " " + f[2] + " "); for (int i = 3; i <= n; i++) { f[i] = f[f[i - 1]] + f[i - f[i - 1]]; System.out.print(f[i] + " "); } } //Driver code public static void main(String []args) { int n = 13 ; sequence(n); } } // This program is contributed // by upendra singh bartwal
Python3
# Python Program to print n terms # of Newman-Conway Sequence def sequence(n): # Function to find # the n-th element # Declare array to store sequence f = [0, 1, 1] print(f[1], end=" "), print(f[2], end=" "), for i in range(3,n+1): f.append( f[f[i - 1]] + f[i - f[i - 1]]) print(f[i], end=" "), # driver code n = 13 sequence(n) # This code is contributed # by upendra singh bartwal
C#
// C# Program to print n terms // of Newman-Conway Sequence using System; class GFG { // Function to find // the n-th element public static void sequence(int n) { // Declare array to store sequence int []f = new int[n + 1]; f[0] = 0; f[1] = 1; f[2] = 1; Console.Write( f[1] + " " + f[2] + " "); for (int i = 3; i <= n; i++) { f[i] = f[f[i - 1]] + f[i - f[i - 1]]; Console.Write(f[i] + " "); } } // Driver code public static void Main() { int n = 13 ; sequence(n); } } // This program is contributed // by vt_m.
PHP
<?php // PHP Program to print n terms // of Newman-Conway Sequence // Function to find // the n-th element function sequence($n) { // Declare array to // store sequence $f=array(0); $f[0] = 0; $f[1] = 1; $f[2] = 1; echo $f[1] , " " , $f[2] , " "; for ($i = 3; $i <= $n; $i++) { $f[$i] = $f[$f[$i - 1]] + $f[$i - $f[$i - 1]]; echo $f[$i], " "; } } // Driver Code { $n = 13; sequence($n); return 0; } // This code is contributed by nitin mittal. ?>
Javascript
<script> // JavaScript Program to print n terms // of Newman-Conway Sequence // Function to find // the n-th element function sequence(n) { // Declare array to store sequence let f = []; f[0] = 0; f[1] = 1; f[2] = 1; document.write( f[1] + " " + f[2] + " "); for (let i = 3; i <= n; i++) { f[i] = f[f[i - 1]] + f[i - f[i - 1]]; document.write(f[i] + " "); } } // Driver code let n = 13 ; sequence(n); </script>
Producción :
1 1 2 2 3 4 4 4 5 6 7 7 8
Publicación traducida automáticamente
Artículo escrito por nickhilrawat y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA