Dado un triángulo rectángulo con altura l , base b e hipotenusa h . Necesitamos encontrar el área del cuadrado más grande que cabe en el triángulo rectángulo.
Ejemplos:
Input: l = 3, b = 4, h = 5 Output: 2.93878 The biggest square that can fit inside is of 1.71428 * 1.71428 dimension Input: l = 5, b = 12, h = 13 Output: 12.4567
Considerando el diagrama anterior, vemos, tanx = l/b .
Aquí también es cierto que, tanx = a/(ba) .
Entonces, l/b = a/(ba) lo que significa que, a = (l*b)/(l+b)
A continuación se muestra la implementación requerida:
C++
// C++ Program to find the area of the biggest square // which can fit inside the right angled triangle #include <bits/stdc++.h> using namespace std; // Function to find the area of the biggest square float squareArea(float l, float b, float h) { // the height or base or hypotenuse // cannot be negative if (l < 0 || b < 0 || h < 0) return -1; // side of the square float a = (l * b) / (l + b); // squaring to get the area return a * a; } // Driver code int main() { float l = 5, b = 12, h = 13; cout << squareArea(l, b, h) << endl; return 0; }
Java
//Java Program to find the area of the biggest square //which can fit inside the right angled triangle public class GFG { //Function to find the area of the biggest square static float squareArea(float l, float b, float h) { // the height or base or hypotenuse // cannot be negative if (l < 0 || b < 0 || h < 0) return -1; // side of the square float a = (l * b) / (l + b); // squaring to get the area return a * a; } //Driver code public static void main(String[] args) { float l = 5, b = 12, h = 13; System.out.println(squareArea(l, b, h)); } }
Python3
# Python 3 Program to find the # area of the biggest square # which can fit inside the right # angled triangle # Function to find the area of the biggest square def squareArea(l, b, h) : # the height or base or hypotenuse # cannot be negative if l < 0 or b < 0 or h < 0 : return -1 # side of the square a = (l * b) / (l + b) # squaring to get the area return a * a # Driver Code if __name__ == "__main__" : l, b, h = 5, 12, 13 print(round(squareArea(l, b, h),4)) # This code is contributed by ANKITRAI1
C#
// C# Program to find the area of // the biggest square which can // fit inside the right angled triangle using System; class GFG { // Function to find the area // of the biggest square static float squareArea(float l, float b, float h) { // the height or base or hypotenuse // cannot be negative if (l < 0 || b < 0 || h < 0) return -1; // side of the square float a = (l * b) / (l + b); // squaring to get the area return a * a; } // Driver code public static void Main() { float l = 5, b = 12, h = 13; Console.WriteLine(squareArea(l, b, h)); } } // This code is contributed // by inder_verma..
PHP
<?php // PHP Program to find the area // of the biggest square which // can fit inside the right // angled triangle // Function to find the area // of the biggest square function squareArea($l, $b, $h) { // the height or base or // hypotenuse cannot be // negative if ($l < 0 || $b < 0 || $h < 0) return -1; // side of the square $a = ($l * $b) / ($l + $b); // squaring to get the area return $a * $a; } // Driver code $l = 5; $b = 12; $h = 13; echo round(squareArea($l, $b, $h), 4); // This code is contributed by mits ?>
Javascript
<script> // javascript Program to find the area of the biggest square // which can fit inside the right angled triangle // Function to find the area of the biggest square function squareArea(l , b , h) { // the height or base or hypotenuse // cannot be negative if (l < 0 || b < 0 || h < 0) return -1; // side of the square var a = (l * b) / (l + b); // squaring to get the area return a * a; } // Driver code var l = 5, b = 12, h = 13; document.write(squareArea(l, b, h).toFixed(4)); // This code contributed by Princi Singh </script>
Producción:
12.4567
Complejidad del tiempo: O(1)
complejidad del espacio: O(1)
Publicación traducida automáticamente
Artículo escrito por IshwarGupta y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA