Mediana de todos los Nodes de un rango dado en un árbol de búsqueda binaria (BST)

Dado un árbol de búsqueda binaria (BST) que consta de N Nodes y dos Nodes A y B , la tarea es encontrar la mediana de todos los Nodes en el BST dado cuyos valores se encuentran en el rango [A, B] .

Ejemplos:

Entrada: A = 3, B = 11

Salida: 6
Explicación:
Los Nodes que se encuentran sobre el rango [3, 11] son ​​{3, 4, 6, 8, 11}. La mediana de los Nodes dados es 6.

Entrada: A = 6, B = 15

Salida: 9.5

Enfoque: el problema dado se puede resolver realizando cualquier recorrido de árbol en el árbol dado y almacenando todos los Nodes que se encuentran en el rango [A, B] , y encuentra la mediana de todos los elementos almacenados. Siga los pasos a continuación para resolver el problema:

A continuación se muestra la implementación del enfoque anterior:

C++

// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Tree Node structure
struct Node {
    struct Node *left, *right;
    int key;
};
 
// Function to create a new BST node
Node* newNode(int key)
{
    Node* temp = new Node;
    temp->key = key;
    temp->left = temp->right = NULL;
    return temp;
}
 
// Function to insert a new node with
// given key in BST
Node* insertNode(Node* node, int key)
{
    // If the tree is empty,
    // return a new node
    if (node == NULL)
        return newNode(key);
 
    // Otherwise, recur down the tree
    if (key < node->key)
        node->left = insertNode(
            node->left, key);
 
    else if (key > node->key)
        node->right = insertNode(
            node->right, key);
 
    // Return the node pointer
    return node;
}
 
// Function to find all the nodes that
// lies over the range [node1, node2]
void getIntermediateNodes(
    Node* root, vector<int>& interNodes,
    int node1, int node2)
{
    // If the tree is empty, return
    if (root == NULL)
        return;
 
    // Traverse for the left subtree
    getIntermediateNodes(root->left,
                         interNodes,
                         node1, node2);
 
    // If a second node is found,
    // then update the flag as false
    if (root->key <= node2
        and root->key >= node1) {
        interNodes.push_back(root->key);
    }
 
    // Traverse the right subtree
    getIntermediateNodes(root->right,
                         interNodes,
                         node1, node2);
}
 
// Function to find the median of all
// the values in the given BST that
// lies over the range [node1, node2]
float findMedian(Node* root, int node1,
                 int node2)
{
    // Stores all the nodes in
    // the range [node1, node2]
    vector<int> interNodes;
 
    getIntermediateNodes(root, interNodes,
                         node1, node2);
 
    // Store the size of the array
    int nSize = interNodes.size();
 
    // Print the median of array
    // based on the size of array
    return (nSize % 2 == 1)
               ? (float)interNodes[nSize / 2]
               : (float)(interNodes[(nSize - 1) / 2]
                         + interNodes[nSize / 2])
                     / 2;
}
 
// Driver Code
int main()
{
    // Given BST
    struct Node* root = NULL;
    root = insertNode(root, 8);
    insertNode(root, 3);
    insertNode(root, 1);
    insertNode(root, 6);
    insertNode(root, 4);
    insertNode(root, 11);
    insertNode(root, 15);
 
    cout << findMedian(root, 3, 11);
 
    return 0;
}

Java

// Java program for the above approach
import java.util.*;
 
class GFG{
 
// Tree Node structure
static class Node
{
    Node left, right;
    int key;
};
 
static Vector<Integer> interNodes = new Vector<Integer>();
 
// Function to create a new BST node
static Node newNode(int key)
{
    Node temp = new Node();
    temp.key = key;
    temp.left = temp.right = null;
    return temp;
}
 
// Function to insert a new node with
// given key in BST
static Node insertNode(Node node, int key)
{
     
    // If the tree is empty,
    // return a new node
    if (node == null)
        return newNode(key);
 
    // Otherwise, recur down the tree
    if (key < node.key)
        node.left = insertNode(
            node.left, key);
 
    else if (key > node.key)
        node.right = insertNode(
            node.right, key);
 
    // Return the node pointer
    return node;
}
 
// Function to find all the nodes that
// lies over the range [node1, node2]
static void getIntermediateNodes(Node root,
                                 int node1,
                                 int node2)
{
     
    // If the tree is empty, return
    if (root == null)
        return;
 
    // Traverse for the left subtree
    getIntermediateNodes(root.left,
                         node1, node2);
 
    // If a second node is found,
    // then update the flag as false
    if (root.key <= node2 &&
        root.key >= node1)
    {
        interNodes.add(root.key);
    }
 
    // Traverse the right subtree
    getIntermediateNodes(root.right,
                         node1, node2);
}
 
// Function to find the median of all
// the values in the given BST that
// lies over the range [node1, node2]
static float findMedian(Node root, int node1,
                                   int node2)
{
     
    // Stores all the nodes in
    // the range [node1, node2]
    getIntermediateNodes(root,
                         node1, node2);
 
    // Store the size of the array
    int nSize = interNodes.size();
 
    // Print the median of array
    // based on the size of array
    return (nSize % 2 == 1) ?
           (float)interNodes.get(nSize / 2) :
           (float)(interNodes.get((nSize - 1) / 2) +
                    interNodes.get(nSize / 2)) / 2;
}
 
// Driver Code
public static void main(String[] args)
{
     
    // Given BST
    Node root = null;
    root = insertNode(root, 8);
    insertNode(root, 3);
    insertNode(root, 1);
    insertNode(root, 6);
    insertNode(root, 4);
    insertNode(root, 11);
    insertNode(root, 15);
 
    System.out.print(findMedian(root, 3, 11));
}
}
 
// This code is contributed by shikhasingrajput

Python3

# Python3 program for the above approach
 
# Tree Node structure
class Node:
    def __init__(self, key):
        self.key = key
        self.left = None
        self.right = None
 
interNodes = []
   
# Function to create a new BST node
def newNode(key):
    temp = Node(key)
    return temp
 
# Function to insert a new node with
# given key in BST
def insertNode(node, key):
    # If the tree is empty,
    # return a new node
    if (node == None):
        return newNode(key)
 
    # Otherwise, recur down the tree
    if (key < node.key):
        node.left = insertNode(node.left, key)
    elif (key > node.key):
        node.right = insertNode(node.right, key)
 
    # Return the node pointer
    return node
 
# Function to find all the nodes that
# lies over the range [node1, node2]
def getIntermediateNodes(root, node1, node2):
    # If the tree is empty, return
    if (root == None):
        return
 
    # Traverse for the left subtree
    getIntermediateNodes(root.left, node1, node2)
 
    # If a second node is found,
    # then update the flag as false
    if (root.key <= node2 and root.key >= node1):
        interNodes.append(root.key)
 
    # Traverse the right subtree
    getIntermediateNodes(root.right, node1, node2)
 
# Function to find the median of all
# the values in the given BST that
# lies over the range [node1, node2]
def findMedian(root, node1, node2):
    # Stores all the nodes in
    # the range [node1, node2]
    getIntermediateNodes(root, node1, node2)
 
    # Store the size of the array
    nSize = len(interNodes)
 
    # Print the median of array
    # based on the size of array
    if nSize % 2 == 1:
        return interNodes[int(nSize / 2)]
    else:
        return (interNodes[int((nSize - 1) / 2)] + interNodes[nSize / 2]) / 2
 
# Given BST
root = None
root = insertNode(root, 8)
insertNode(root, 3)
insertNode(root, 1)
insertNode(root, 6)
insertNode(root, 4)
insertNode(root, 11)
insertNode(root, 15)
 
print(findMedian(root, 3, 11))
 
# This code is contributed by decode2207.

C#

// C# program for the above approach
using System;
using System.Collections.Generic;
 
public class GFG{
 
// Tree Node structure
class Node
{
    public Node left, right;
    public int key;
};
 
static List<int> interNodes = new List<int>();
 
// Function to create a new BST node
static Node newNode(int key)
{
    Node temp = new Node();
    temp.key = key;
    temp.left = temp.right = null;
    return temp;
}
 
// Function to insert a new node with
// given key in BST
static Node insertNode(Node node, int key)
{
     
    // If the tree is empty,
    // return a new node
    if (node == null)
        return newNode(key);
 
    // Otherwise, recur down the tree
    if (key < node.key)
        node.left = insertNode(
            node.left, key);
 
    else if (key > node.key)
        node.right = insertNode(
            node.right, key);
 
    // Return the node pointer
    return node;
}
 
// Function to find all the nodes that
// lies over the range [node1, node2]
static void getIntermediateNodes(Node root,
                                 int node1,
                                 int node2)
{
     
    // If the tree is empty, return
    if (root == null)
        return;
 
    // Traverse for the left subtree
    getIntermediateNodes(root.left,
                         node1, node2);
 
    // If a second node is found,
    // then update the flag as false
    if (root.key <= node2 &&
        root.key >= node1)
    {
        interNodes.Add(root.key);
    }
 
    // Traverse the right subtree
    getIntermediateNodes(root.right,
                         node1, node2);
}
 
// Function to find the median of all
// the values in the given BST that
// lies over the range [node1, node2]
static float findMedian(Node root, int node1,
                                   int node2)
{
     
    // Stores all the nodes in
    // the range [node1, node2]
    getIntermediateNodes(root,
                         node1, node2);
 
    // Store the size of the array
    int nSize = interNodes.Count;
 
    // Print the median of array
    // based on the size of array
    return (nSize % 2 == 1) ?
           (float)interNodes[nSize / 2] :
           (float)(interNodes[(nSize - 1) / 2] +
                    interNodes[nSize / 2]) / 2;
}
 
// Driver Code
public static void Main(String[] args)
{
     
    // Given BST
    Node root = null;
    root = insertNode(root, 8);
    insertNode(root, 3);
    insertNode(root, 1);
    insertNode(root, 6);
    insertNode(root, 4);
    insertNode(root, 11);
    insertNode(root, 15);
 
    Console.Write(findMedian(root, 3, 11));
}
}
 
// This code is contributed by shikhasingrajput

Javascript

<script>
    // Javascript program for the above approach
     
    // Tree Node structure
    class Node
    {
        constructor(key) {
           this.left = null;
           this.right = null;
           this.key = key;
        }
    }
     
    let interNodes = [];
  
    // Function to create a new BST node
    function newNode(key)
    {
        let temp = new Node(key);
        return temp;
    }
 
    // Function to insert a new node with
    // given key in BST
    function insertNode(node, key)
    {
 
        // If the tree is empty,
        // return a new node
        if (node == null)
            return newNode(key);
 
        // Otherwise, recur down the tree
        if (key < node.key)
            node.left = insertNode(
                node.left, key);
 
        else if (key > node.key)
            node.right = insertNode(
                node.right, key);
 
        // Return the node pointer
        return node;
    }
 
    // Function to find all the nodes that
    // lies over the range [node1, node2]
    function getIntermediateNodes(root, node1, node2)
    {
 
        // If the tree is empty, return
        if (root == null)
            return;
 
        // Traverse for the left subtree
        getIntermediateNodes(root.left,
                             node1, node2);
 
        // If a second node is found,
        // then update the flag as false
        if (root.key <= node2 &&
            root.key >= node1)
        {
            interNodes.push(root.key);
        }
 
        // Traverse the right subtree
        getIntermediateNodes(root.right,
                             node1, node2);
    }
 
    // Function to find the median of all
    // the values in the given BST that
    // lies over the range [node1, node2]
    function findMedian(root, node1, node2)
    {
 
        // Stores all the nodes in
        // the range [node1, node2]
        getIntermediateNodes(root, node1, node2);
 
        // Store the size of the array
        let nSize = interNodes.length;
 
        // Print the median of array
        // based on the size of array
        return (nSize % 2 == 1) ?
               interNodes[parseInt(nSize / 2, 10)] :
               (interNodes[parseInt((nSize - 1) / 2, 10)] +
                        interNodes[nSize / 2]) / 2;
    }
     
    // Given BST
    let root = null;
    root = insertNode(root, 8);
    insertNode(root, 3);
    insertNode(root, 1);
    insertNode(root, 6);
    insertNode(root, 4);
    insertNode(root, 11);
    insertNode(root, 15);
  
    document.write(findMedian(root, 3, 11));
 
// This code is contributed by suresh07.
</script>
Producción: 

6

 

Complejidad temporal: O(N)
Espacio auxiliar: O(N)

Publicación traducida automáticamente

Artículo escrito por yogesh irale y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *