Dado un número . La tarea es contar pares (x, y) de modo que x*y sea divisible por (x+y) y la condición 1 <= x < y < N se cumple.
Ejemplos :
Input : N = 6 Output : 1 Explanation: The only pair is (3, 6) which satisfies all of the given condition, 3<6 and 18%9=0. Input : N = 15 Output : 4
El enfoque básico es iterar usando dos bucles manteniendo cuidadosamente la condición dada 1 <= x < y < N y generar todos los pares válidos posibles y contar esos pares para los cuales el producto de sus valores es divisible por la suma.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ program to count pairs of numbers // from 1 to N with Product divisible // by their Sum #include <bits/stdc++.h> using namespace std; // Function to count pairs int countPairs(int n) { // variable to store count int count = 0; // Generate all possible pairs such that // 1 <= x < y < n for (int x = 1; x < n; x++) { for (int y = x + 1; y <= n; y++) { if ((y * x) % (y + x) == 0) count++; } } return count; } // Driver code int main() { int n = 15; cout << countPairs(n); return 0; }
Java
// Java program to count pairs of numbers // from 1 to N with Product divisible // by their Sum import java.io.*; class GFG { // Function to count pairs static int countPairs(int n) { // variable to store count int count = 0; // Generate all possible pairs such that // 1 <= x < y < n for (int x = 1; x < n; x++) { for (int y = x + 1; y <= n; y++) { if ((y * x) % (y + x) == 0) count++; } } return count; } // Driver code public static void main (String[] args) { int n = 15; System.out.println(countPairs(n)); } } // This code is contributed by anuj_67..
Python3
# Python 3 program to count pairs of numbers # from 1 to N with Product divisible # by their Sum # Function to count pairs def countPairs(n): # variable to store count count = 0 # Generate all possible pairs such that # 1 <= x < y < n for x in range(1, n): for y in range(x + 1, n + 1): if ((y * x) % (y + x) == 0): count += 1 return count # Driver code n = 15 print(countPairs(n)) # This code is contributed # by PrinciRaj1992
C#
// C# program to count pairs of numbers // from 1 to N with Product divisible // by their Sum using System; class GFG { // Function to count pairs static int countPairs(int n) { // variable to store count int count = 0; // Generate all possible pairs // such that 1 <= x < y < n for (int x = 1; x < n; x++) { for (int y = x + 1; y <= n; y++) { if ((y * x) % (y + x) == 0) count++; } } return count; } // Driver code public static void Main () { int n = 15; Console.WriteLine(countPairs(n)); } } // This code is contributed by anuj_67
PHP
<?php // PHP program to count pairs of // numbers from 1 to N with Product // divisible by their Sum // Function to count pairs function countPairs($n) { // variable to store count $count = 0; // Generate all possible pairs // such that 1 <= x < y < n for ($x = 1; $x < $n; $x++) { for ($y = $x + 1; $y <= $n; $y++) { if (($y * $x) % ($y + $x) == 0) $count++; } } return $count; } // Driver code $n = 15; echo countPairs($n); // This code is contributed by ajit ?>
Javascript
<script> // Javascript program to count pairs of numbers // from 1 to N with Product divisible // by their Sum // Function to count pairs function countPairs(n) { // variable to store count let count = 0; // Generate all possible pairs such that // 1 <= x < y < n for (let x = 1; x < n; x++) { for (let y = x + 1; y <= n; y++) { if ((y * x) % (y + x) == 0) count++; } } return count; } // Driver code let n = 15; document.write(countPairs(n)); // This code is contributed by souravmahato348. </script>
Producción:
4
Tiempo Complejidad : O(N 2 )
Espacio Auxiliar: O(1)