Min operaciones para reducir N multiplicando por cualquier número o sacando raíz cuadrada

Dado un número N , la tarea es encontrar el valor mínimo de N aplicando las siguientes operaciones cualquier número de veces: 

Ejemplos: 
 

Entrada: N = 20 
Salida: 10
Explicación: 
Multiplicar -> 20 * 5 = 100 
sqrt(100) = 10, que es el valor mínimo que se puede obtener.

Entrada: N = 5184 
Salida:
Explicación:
sqrt(5184) = 72. 
Multiplica -> 72*18 = 1296 
sqrt(1296) = 6, que es el valor mínimo que se puede obtener.
 

 

Enfoque : este problema se puede resolver utilizando el enfoque codicioso . A continuación se muestran los pasos:

  1. Siga reemplazando N por sqrt(N) hasta que N sea un cuadrado perfecto.
  2. Después del paso anterior, itere de sqrt(N) a 2 , y para cada, sigo reemplazando N con N / i si N es divisible por i 2 .
  3. El valor de N después del paso anterior será el valor mínimo posible.

A continuación se muestra la implementación del enfoque anterior:

C++

// C++ program for above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to reduce N to its minimum
// possible value by the given operations
void minValue(int n)
{
    // Keep replacing n until is
    // an integer
    while (int(sqrt(n)) == sqrt(n)
        && n > 1) {
        n = sqrt(n);
    }
 
    // Keep replacing n until n
    // is divisible by i * i
    for (int i = sqrt(n);
        i > 1; i--) {
 
        while (n % (i * i) == 0)
            n /= i;
    }
 
    // Print the answer
    cout << n;
}
 
// Driver Code
int main()
{
    // Given N
    int N = 20;
 
    // Function Call
    minValue(N);
}

Java

// Java implementation of the above approach
import java.lang.Math;
 
class GFG{
 
// Function to reduce N to its minimum
// possible value by the given operations
static void minValue(int n)
{
     
    // Keep replacing n until is
    // an integer
    while ((int)Math.sqrt(n) ==
                Math.sqrt(n) && n > 1)
    {
        n = (int)(Math.sqrt(n));
    }
 
    // Keep replacing n until n
    // is divisible by i * i
    for(int i = (int)(Math.sqrt(n));
            i > 1; i--)
    {
        while (n % (i * i) == 0)
            n /= i;
    }
     
    // Print the answer
    System.out.println(n);
}
 
// Driver code
public static void main(String args[])
{
     
    // Given N
    int N = 20;
     
    // Function call
    minValue(N);
}
}
 
// This code is contributed by vikas_g

Python3

# Python3 program for the above approach
import math
 
# Function to reduce N to its minimum
# possible value by the given operations
def MinValue(n):
     
    # Keep replacing n until is
    # an integer
    while(int(math.sqrt(n)) ==
              math.sqrt(n) and n > 1):
        n = math.sqrt(n)
         
    # Keep replacing n until n
    # is divisible by i * i
    for i in range(int(math.sqrt(n)), 1, -1):
        while (n % (i * i) == 0):
            n /= i
             
    # Print the answer
    print(n)
 
# Driver code
n = 20
 
# Function call
MinValue(n)
 
# This code is contributed by virusbuddah_

C#

// C# implementation of the approach
using System;
 
class GFG{
     
// Function to reduce N to its minimum
// possible value by the given operations
static void minValue(int n)
{
     
    // Keep replacing n until is
    // an integer
    while ((int)Math.Sqrt(n) ==
                Math.Sqrt(n) && n > 1)
    {
        n = (int)(Math.Sqrt(n));
    }
     
    // Keep replacing n until n
    // is divisible by i * i
    for (int i = (int)(Math.Sqrt(n));
             i > 1; i--)
    {
        while (n % (i * i) == 0)
            n /= i;
    }
     
    // Print the answer
    Console.Write(n);
}
 
// Driver code
public static void Main()
{
     
    // Given N
    int N = 20;
     
    // Function call
    minValue(N);
}
}
 
// This code is contributed by vikas_g

Javascript

<script>
 
// Javascript program for above approach
 
// Function to reduce N to its minimum
// possible value by the given operations
function minValue(n)
{
 
    // Keep replacing n until is
    // an integer
    while (parseInt(Math.sqrt(n)) == Math.sqrt(n)
        && n > 1)
    {
        n = parseInt(Math.sqrt(n));
    }
 
    // Keep replacing n until n
    // is divisible by i * i
    for (var i = parseInt(Math.sqrt(n));
        i > 1; i--) {
 
        while (n % (i * i) == 0)
            n /= i;
    }
 
    // Print the answer
    document.write(n);
}
 
// Driver Code
 
// Given N
var N = 20;
 
// Function Call
minValue(N);
 
// This code is contributed by rutvik_56.
</script>
Producción:

10

Complejidad temporal: O(N)
Espacio auxiliar: O(1)

Publicación traducida automáticamente

Artículo escrito por spp____ y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *