Cuente las rutas diagonales desde un Node hasta una hoja que consta de Nodes del mismo valor

Dado un árbol binario , la tarea es encontrar el número de caminos diagonales a la hoja de un árbol binario tal que los valores de todos los Nodes en la misma diagonal sean iguales.

Ejemplos:

Aporte: 

       5
      / \
     6   5
      \   \
       6   5

Salida:
Explicación: 
Diagonal 6 – 6 y 5 – 5 contiene el mismo valor. 
Por lo tanto, la salida requerida es 2.

Aporte:  

       5
      / \
     6   5
      \   \
       5   5

Salida: 1  

Enfoque:  La idea principal es recorrer el árbol en diagonal usando un Mapa . Siga los pasos a continuación para resolver este problema:

A continuación se muestra la implementación del enfoque anterior.

C++14

// C++ program of the above approach
#include <bits/stdc++.h>
using namespace std;
 
struct TreeNode
{
    int val = 0;
    TreeNode *left, *right;
     
    TreeNode(int x)
    {
        val = x;
        left = NULL;
        right = NULL;
    }
};
 
// Function to perform diagonal
// traversal on the given binary tree
void fillMap(TreeNode *root, int left,
             map<int, set<int>> &diag)
{
     
    // If tree is empty
    if (!root)
        return;
 
    // If current diagonal is not visited
    if (diag[left].size() == 0)
    {
         
        // Update diag[left]
        diag[left].insert(root->val);
    }
     
    // Otherwise, map current node
    // with its diagonal
    else
        diag[left].insert(root->val);
 
    // Recursively, traverse left subtree
    fillMap(root->left, left + 1, diag);
 
    // Recursively, traverse right subtree
    fillMap(root->right, left, diag);
}
 
// Function to count diagonal
// paths having same-valued nodes
int sameDiag(TreeNode *root)
{
     
    // Maps the values of all
    // nodes with its diagonal
    map<int, set<int>> diag;
 
    // Stores indexing of diagonal
    int left = 0;
 
    // Function call to perform
    // diagonal traversal
    fillMap(root, left, diag);
 
    // Stores count of diagonals such
    // that all the nodes on the same
    // diagonal are equal
    int count = 0;
 
    // Traverse each diagonal
    for(auto d : diag)
    {
         
        // If all nodes on the current
        // diagonal are equal
        if (diag[d.first].size() == 1)
         
            // Update count
            count += 1;
    }
    return count;
}
 
// Driver Code
int main()
{
     
    // Given tree
    TreeNode *root = new TreeNode(5);
    root->left = new TreeNode(6);
    root->right = new TreeNode(5);
    root->left->right = new TreeNode(6);
    root->right->right = new TreeNode(5);
     
    // Function call
    cout << sameDiag(root);
}
 
// This code is contributed by mohit kumar 29

Java

// Java program for above approach
import java.util.*;
import java.lang.*;
class GFG
{
 
  // Structure of a Node
  static class TreeNode
  {
    int val;
    TreeNode left, right;
 
    TreeNode(int key)
    {
      val = key;
      left = null;
      right = null;
    }
  };
 
  // Function to perform diagonal
  // traversal on the given binary tree
  static void fillMap(TreeNode root, int left,
                      Map<Integer,Set<Integer>> diag)
  {
 
    // If tree is empty
    if (root == null)
      return;
 
    // If current diagonal is not visited
    if (diag.get(left) == null)
    {
 
      // Update diag[left]
      diag.put(left, new HashSet<Integer>());
      diag.get(left).add(root.val);
    }
 
    // Otherwise, map current node
    // with its diagonal
    else
      diag.get(left).add(root.val);
 
    // Recursively, traverse left subtree
    fillMap(root.left, left + 1, diag);
 
    // Recursively, traverse right subtree
    fillMap(root.right, left, diag);
  }
 
  // Function to count diagonal
  // paths having same-valued nodes
  static int sameDiag(TreeNode root)
  {
 
    // Maps the values of all
    // nodes with its diagonal
    Map<Integer, Set<Integer>> diag = new HashMap<>();
 
    // Stores indexing of diagonal
    int left = 0;
 
    // Function call to perform
    // diagonal traversal
    fillMap(root, left, diag);
 
    // Stores count of diagonals such
    // that all the nodes on the same
    // diagonal are equal
    int count = 0;
 
    // Traverse each diagonal
    for(Map.Entry<Integer,Set<Integer>> d:diag.entrySet())
    {
 
      // If all nodes on the current
      // diagonal are equal
      if (d.getValue().size() == 1)
 
        // Update count
        count += 1;
    }
    return count;
  }
 
  // Driver function
  public static void main (String[] args)
  {
    TreeNode root = new TreeNode(5);
    root.left = new TreeNode(6);
    root.right = new TreeNode(5);
    root.left.right = new TreeNode(6);
    root.right.right = new TreeNode(5);
 
    System.out.println(sameDiag(root));
  }
}
// This code is contributed by offbeat

Python3

# Python3 program of the above approach
 
# Structure of a Node
class TreeNode:
    def __init__(self, val = 0, left = None, right = None):
        self.val = val
        self.left = left
        self.right = right
 
 
# Function to count diagonal
# paths having same-valued nodes
def sameDiag(root):
 
    # Maps the values of all
    # nodes with its diagonal
    diag = {}
 
    # Stores indexing of diagonal
    left = 0
 
    # Function to perform diagonal
    # traversal on the given binary tree
    def fillMap(root, left):
 
        # If tree is empty
        if not root:
            return
 
        # If current diagonal is not visited
        if left not in diag:
 
            # Update diag[left]
            diag[left] = set([root.val])
 
        # Otherwise, map current node
        # with its diagonal
        else:
            diag[left].add(root.val)
 
        # Recursively, traverse left subtree
        fillMap(root.left, left + 1)
 
        # Recursively, traverse right subtree
        fillMap(root.right, left)
 
    # Function call to perform
    # diagonal traversal
    fillMap(root, left)
 
    # Stores count of diagonals such
    # that all the nodes on the same
    # diagonal are equal
    count = 0
 
    # Traverse each diagonal
    for d in diag:
 
        # If all nodes on the current
        # diagonal are equal
        if len(list(diag[d])) == 1:
 
            # Update count
            count += 1
    return count
 
 
# Driver Code
if __name__ == '__main__':
     
     
    # Given tree
    root = TreeNode(5)
    root.left = TreeNode(6)
    root.right = TreeNode(5)
    root.left.right = TreeNode(6)
    root.right.right = TreeNode(5)
 
    # Function call
    print(sameDiag(root))

Javascript

<script>
 
// JavaScript program for above approach
 
// Structure of a Node
class TreeNode
{
    constructor(key)
    {
        this.val=key;
        this.left=this.right=null;
    }
}
 
// Function to perform diagonal
// traversal on the given binary tree
function fillMap(root,left,diag)
{
    // If tree is empty
    if (root == null)
      return;
  
    // If current diagonal is not visited
    if (diag.get(left) == null)
    {
  
      // Update diag[left]
      diag.set(left, new Set());
      diag.get(left).add(root.val);
    }
  
    // Otherwise, map current node
    // with its diagonal
    else
      diag.get(left).add(root.val);
  
    // Recursively, traverse left subtree
    fillMap(root.left, left + 1, diag);
  
    // Recursively, traverse right subtree
    fillMap(root.right, left, diag);
}
 
// Function to count diagonal
// paths having same-valued nodes
function sameDiag(root)
{
    // Maps the values of all
    // nodes with its diagonal
    let diag = new Map();
  
    // Stores indexing of diagonal
    let left = 0;
  
    // Function call to perform
    // diagonal traversal
    fillMap(root, left, diag);
  
    // Stores count of diagonals such
    // that all the nodes on the same
    // diagonal are equal
    let count = 0;
  
    // Traverse each diagonal
    for(let [key, value] of diag.entries())
    {
  
      // If all nodes on the current
      // diagonal are equal
      if (value.size == 1)
  
        // Update count
        count += 1;
    }
    return count;
}
 
// Driver function
let root = new TreeNode(5);
root.left = new TreeNode(6);
root.right = new TreeNode(5);
root.left.right = new TreeNode(6);
root.right.right = new TreeNode(5);
 
document.write(sameDiag(root));
 
 
// This code is contributed by patel2127
 
</script>

C#

using System;
using System.Collections.Generic;
public class TreeNode
  {
    public int val;
    public TreeNode left, right;
  
    public TreeNode(int key)
    {
      val = key;
      left = null;
      right = null;
    }
  }
 
public class GFG{
     
    // Function to perform diagonal
  // traversal on the given binary tree
  static void fillMap(TreeNode root, int left,
                      Dictionary<int,HashSet<int>> diag)
  {
  
    // If tree is empty
    if (root == null)
      return;
  
    // If current diagonal is not visited
    if (!diag.ContainsKey(left))
    {
  
      // Update diag[left]
      diag.Add(left, new HashSet<int>());
      diag[left].Add(root.val);
    }
  
    // Otherwise, map current node
    // with its diagonal
    else
      diag[left].Add(root.val);
  
    // Recursively, traverse left subtree
    fillMap(root.left, left + 1, diag);
  
    // Recursively, traverse right subtree
    fillMap(root.right, left, diag);
  }
  
  // Function to count diagonal
  // paths having same-valued nodes
  static int sameDiag(TreeNode root)
  {
  
    // Maps the values of all
    // nodes with its diagonal
    Dictionary<int,HashSet<int>> diag = new Dictionary<int,HashSet<int>>();
  
    // Stores indexing of diagonal
    int left = 0;
  
    // Function call to perform
    // diagonal traversal
    fillMap(root, left, diag);
  
    // Stores count of diagonals such
    // that all the nodes on the same
    // diagonal are equal
    int count = 0;
  
    // Traverse each diagonal
    foreach(KeyValuePair<int,HashSet<int>> d in diag)
    {
  
      // If all nodes on the current
      // diagonal are equal
      if (d.Value.Count == 1)
  
        // Update count
        count += 1;
    }
    return count;
  }
    // Driver function
    static public void Main (){
         
        TreeNode root = new TreeNode(5);
    root.left = new TreeNode(6);
    root.right = new TreeNode(5);
    root.left.right = new TreeNode(6);
    root.right.right = new TreeNode(5);
  
    Console.WriteLine(sameDiag(root));
         
    }
}
Producción: 

2

 

Complejidad temporal: O(N)
Espacio auxiliar: O(N)

Publicación traducida automáticamente

Artículo escrito por rohitsingh07052 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *