Nos dan las coordenadas de un triángulo. La tarea es clasificar este triángulo sobre la base de los lados y el ángulo.
Ejemplos:
Input: p1 = (3, 0), p2 = (0, 4), p3 = (4, 7) Output: Right Angle triangle and Isosceles Input: p1 = (0, 0), p2 = (1, 1), p3 = (1, 2); Output: Triangle is obtuse and Scalene
Acercarse:
- Podemos resolver este problema calculando primero la longitud de los lados y luego clasificando al comparar las longitudes de los lados. La clasificación por lados es simple, si todos los lados son iguales, el triángulo será equilátero , si dos lados son iguales, el triángulo será isósceles , de lo contrario, será escaleno .
- Ahora el ángulo se puede clasificar por el teorema de Pitágoras, si la suma del cuadrado de dos lados es igual al cuadrado del tercer lado, el triángulo será un ángulo recto , si el triángulo menor será un ángulo agudo, de lo contrario será un triángulo obtuso .
A continuación se escribe un código simple para la clasificación del triángulo:
C++
// C/C++ program to classify a given triangle #include <bits/stdc++.h> using namespace std; struct point { int x, y; point() {} point(int x, int y) : x(x), y(y) { } }; // Utility method to return square of x int square(int x) { return x * x; } // Utility method to sort a, b, c; after this // method a <= b <= c void order(int& a, int& b, int& c) { int copy[3]; copy[0] = a; copy[1] = b; copy[2] = c; sort(copy, copy + 3); a = copy[0]; b = copy[1]; c = copy[2]; } // Utility method to return Square of distance // between two points int euclidDistSquare(point p1, point p2) { return square(p1.x - p2.x) + square(p1.y - p2.y); } // Method to classify side string getSideClassification(int a, int b, int c) { // if all sides are equal if (a == b && b == c) return "Equilateral"; // if any two sides are equal else if (a == b || b == c) return "Isosceles"; else return "Scalene"; } // Method to classify angle string getAngleClassification(int a, int b, int c) { // If addition of sum of square of two side // is less, then acute if (a + b > c) return "acute"; // by pythagoras theorem else if (a + b == c) return "right"; else return "obtuse"; } // Method to classify the triangle by sides and angles void classifyTriangle(point p1, point p2, point p3) { // Find squares of distances between points int a = euclidDistSquare(p1, p2); int b = euclidDistSquare(p1, p3); int c = euclidDistSquare(p2, p3); // Sort all squares of distances in increasing order order(a, b, c); cout << "Triangle is " + getAngleClassification(a, b, c) + " and " + getSideClassification(a, b, c) << endl; } // Driver code int main() { point p1, p2, p3; p1 = point(3, 0); p2 = point(0, 4); p3 = point(4, 7); classifyTriangle(p1, p2, p3); p1 = point(0, 0); p2 = point(1, 1); p3 = point(1, 2); classifyTriangle(p1, p2, p3); return 0; }
Java
// Java program to classify a given triangle import java.util.*; class GFG { static class point { int x, y; point() {} public point(int x, int y) { this.x = x; this.y = y; } }; // Utility method to return square of x static int square(int x) { return x * x; } static int a, b, c; // Utility method to sort a, b, c; after this // method a <= b <= c static void order() { int []copy = new int[3]; copy[0] = a; copy[1] = b; copy[2] = c; Arrays.sort(copy); a = copy[0]; b = copy[1]; c = copy[2]; } // Utility method to return Square of distance // between two points static int euclidDistSquare(point p1, point p2) { return square(p1.x - p2.x) + square(p1.y - p2.y); } // Method to classify side static String getSideClassification(int a, int b, int c) { // if all sides are equal if (a == b && b == c) return "Equilateral"; // if any two sides are equal else if (a == b || b == c) return "Isosceles"; else return "Scalene"; } // Method to classify angle static String getAngleClassification(int a, int b, int c) { // If addition of sum of square of two side // is less, then acute if (a + b > c) return "acute"; // by pythagoras theorem else if (a + b == c) return "right"; else return "obtuse"; } // Method to classify the triangle // by sides and angles static void classifyTriangle(point p1, point p2, point p3) { // Find squares of distances between points a = euclidDistSquare(p1, p2); b = euclidDistSquare(p1, p3); c = euclidDistSquare(p2, p3); // Sort all squares of distances in increasing order order(); System.out.println( "Triangle is " + getAngleClassification(a, b, c) + " and " + getSideClassification(a, b, c)); } // Driver code public static void main(String[] args) { point p1, p2, p3; p1 = new point(3, 0); p2 = new point(0, 4); p3 = new point(4, 7); classifyTriangle(p1, p2, p3); p1 = new point(0, 0); p2 = new point(1, 1); p3 = new point(1, 2); classifyTriangle(p1, p2, p3); } } // This code is contributed by Rajput-Ji
Python3
# Python program to classify a given triangle class point: def __init__(self, x, y): self.x = x self.y = y # Utility method to return square of x def square(x): return x * x # Utility method to sort a, b, c; after this # method a <= b <= c def order(a, b, c): copy = [a, b, c] copy.sort() return copy[0], copy[1], copy[2] # Utility method to return Square of distance # between two points def euclidDistSquare(p1, p2): return square(p1.x - p2.x) + square(p1.y - p2.y) # Method to classify side def getSideClassification(a, b, c): # if all sides are equal if a == b and b == c: return "Equilateral" # if any two sides are equal elif a == b or b == c: return "Isosceles" else: return "Scalene" # Method to classify angle def getAngleClassification(a, b, c): # If addition of sum of square of two side # is less, then acute if a + b > c: return "acute" # by pythagoras theorem elif a + b == c: return "right" else: return "obtuse" # Method to classify the triangle by sides and angles def classifyTriangle(p1, p2, p3): # Find squares of distances between points a = euclidDistSquare(p1, p2) b = euclidDistSquare(p1, p3) c = euclidDistSquare(p2, p3) # Sort all squares of distances in increasing order a, b, c = order(a, b, c) print("Triangle is ", getAngleClassification(a, b, c), " and ", getSideClassification(a, b, c)) # Driver code p1 = point(3, 0) p2 = point(0, 4) p3 = point(4, 7) classifyTriangle(p1, p2, p3) p1 = point(0, 0) p2 = point(1, 1) p3 = point(1, 2) classifyTriangle(p1, p2, p3) # The code is contributed by Gautam goel (gautamgoel962)
C#
// C# program to classify a given triangle using System; class GFG { public class point { public int x, y; public point() {} public point(int x, int y) { this.x = x; this.y = y; } }; // Utility method to return square of x static int square(int x) { return x * x; } static int a, b, c; // Utility method to sort a, b, c; // after this method a <= b <= c static void order() { int []copy = new int[3]; copy[0] = a; copy[1] = b; copy[2] = c; Array.Sort(copy); a = copy[0]; b = copy[1]; c = copy[2]; } // Utility method to return // Square of distance between two points static int euclidDistSquare(point p1, point p2) { return square(p1.x - p2.x) + square(p1.y - p2.y); } // Method to classify side static String getSideClassification(int a, int b, int c) { // if all sides are equal if (a == b && b == c) return "Equilateral"; // if any two sides are equal else if (a == b || b == c) return "Isosceles"; else return "Scalene"; } // Method to classify angle static String getAngleClassification(int a, int b, int c) { // If addition of sum of square of // two side is less, then acute if (a + b > c) return "acute"; // by pythagoras theorem else if (a + b == c) return "right"; else return "obtuse"; } // Method to classify the triangle // by sides and angles static void classifyTriangle(point p1, point p2, point p3) { // Find squares of distances between points a = euclidDistSquare(p1, p2); b = euclidDistSquare(p1, p3); c = euclidDistSquare(p2, p3); // Sort all squares of distances // in increasing order order(); Console.WriteLine( "Triangle is " + getAngleClassification(a, b, c) + " and " + getSideClassification(a, b, c)); } // Driver code public static void Main(String[] args) { point p1, p2, p3; p1 = new point(3, 0); p2 = new point(0, 4); p3 = new point(4, 7); classifyTriangle(p1, p2, p3); p1 = new point(0, 0); p2 = new point(1, 1); p3 = new point(1, 2); classifyTriangle(p1, p2, p3); } } // This code is contributed by 29AjayKumar
Javascript
<script> // Javascript program to classify a given triangle class point { constructor(x,y) { this.x = x; this.y = y; } } // Utility method to return square of x function square(x) { return x * x; } let a, b, c; // Utility method to sort a, b, c; after this // method a <= b <= c function order() { let copy = new Array(3); copy[0] = a; copy[1] = b; copy[2] = c; (copy).sort(function(a,b){return a-b;}); a = copy[0]; b = copy[1]; c = copy[2]; } // Utility method to return Square of distance // between two points function euclidDistSquare(p1,p2) { return square(p1.x - p2.x) + square(p1.y - p2.y); } // Method to classify side function getSideClassification(a,b,c) { // if all sides are equal if (a == b && b == c) return "Equilateral"; // if any two sides are equal else if (a == b || b == c) return "Isosceles"; else return "Scalene"; } // Method to classify angle function getAngleClassification(a, b, c) { // If addition of sum of square of two side // is less, then acute if (a + b > c) return "acute"; // by pythagoras theorem else if (a + b == c) return "right"; else return "obtuse"; } // Method to classify the triangle // by sides and angles function classifyTriangle(p1, p2, p3) { // Find squares of distances between points a = euclidDistSquare(p1, p2); b = euclidDistSquare(p1, p3); c = euclidDistSquare(p2, p3); // Sort all squares of distances in increasing order order(); document.write( "Triangle is " + getAngleClassification(a, b, c) + " and " + getSideClassification(a, b, c)+"<br>"); } // Driver code let p1, p2, p3; p1 = new point(3, 0); p2 = new point(0, 4); p3 = new point(4, 7); classifyTriangle(p1, p2, p3); p1 = new point(0, 0); p2 = new point(1, 1); p3 = new point(1, 2); classifyTriangle(p1, p2, p3); // This code is contributed by rag2127 </script>
Triangle is right and Isosceles Triangle is obtuse and Scalene
Complejidad del tiempo : O(1)
Espacio Auxiliar : O(1)
Este artículo es una contribución de Utkarsh Trivedi . Si te gusta GeeksforGeeks y te gustaría contribuir, también puedes escribir un artículo usando write.geeksforgeeks.org o enviar tu artículo por correo a review-team@geeksforgeeks.org. Vea su artículo que aparece en la página principal de GeeksforGeeks y ayude a otros Geeks.
Escriba comentarios si encuentra algo incorrecto o si desea compartir más información sobre el tema tratado anteriormente.
Publicación traducida automáticamente
Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA