Reordenar los dígitos de un número dado para convertirlo en una potencia de 2

Dado un entero positivo N , la tarea es reorganizar los dígitos del entero dado de manera que el entero se convierta en una potencia de 2 . Si existe más de una solución, imprima el entero más pequeño posible sin el 0 inicial . De lo contrario, imprima -1 .

Ejemplos:

Entrada: N = 460 
Salida: 64 
Explicación: 
64 es una potencia de 2, la salida requerida es 64.

Entrada: 36 
Salida: -1 
Explicación: 
Los posibles reordenamientos del entero son { 36, 63 }. 
Por lo tanto, la salida requerida es -1.

Enfoque: La idea es generar todas las permutaciones de los dígitos del entero dado . Para cada permutación, verifica si el número entero es una potencia de 2 o no . Si se encuentra que es cierto, imprima el número entero. De lo contrario, imprima -1 . Siga los pasos a continuación para resolver el problema:

A continuación se muestra la implementación del enfoque anterior:

C++

// C++ program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to rearrange the digits of N
// such that N become power of 2
int reorderedPowerOf2(int n)
{
 
    // Stores digits of N
    string str = to_string(n);
 
    // Sort the string
    // ascending order
    sort(str.begin(), str.end());
 
    // Stores count of digits in N
    int sz = str.length();
 
    // Generate all permutation and check if
    // the permutation if power of 2 or not
    do {
 
        // Update n
        n = stoi(str);
 
        // If n is power of 2
        if (n && !(n & (n - 1))) {
 
            return n;
        }
    } while (next_permutation(str.begin(), str.end()));
 
    return -1;
}
 
// Driver Code
int main()
{
    int n = 460;
 
    cout << reorderedPowerOf2(n);
 
    return 0;
}

Java

// Java program to implement
// the above approach
import java.io.*;
import java.util.*;
class GFG {
 
    static void swap(char[] chars, int i, int j)
    {
        char ch = chars[i];
        chars[i] = chars[j];
        chars[j] = ch;
    }
 
    static void reverse(char[] chars, int start)
    {
        for (int i = start, j = chars.length - 1; i < j;
             i++, j--) {
            swap(chars, i, j);
        }
    }
 
    // Function to find lexicographically next permutations
    // of a string. It returns true if the string could be
    // rearranged as a lexicographically greater permutation
    // else it returns false
    static boolean next_permutation(char[] chars)
    {
 
        // Find largest index i such
        // that chars[i - 1] is less than chars[i]
        int i = chars.length - 1;
        while (chars[i - 1] >= chars[i]) {
 
            // if i is first index of the string,
            // that means we are already at
            // highest possible permutation i.e.
            // string is sorted in desc order
            if (--i == 0) {
                return false;
            }
        }
 
        // if we reach here, substring chars[i..n)
        // is sorted in descending order
        // i.e. chars[i-1] < chars[i] >= chars[i+1] >=
        // chars[i+2] >= ... >= chars[n-1]
 
        // Find highest index j to the right of index i such
        // that chars[j] > chars[i–1]
        int j = chars.length - 1;
        while (j > i && chars[j] <= chars[i - 1]) {
            j--;
        }
 
        // swap characters at index i-1 with index j
        swap(chars, i - 1, j);
 
        // reverse the substring chars[i..n) and return true
        reverse(chars, i);
 
        return true;
    }
 
    // Function to rearrange the digits of N
    // such that N become power of 2
    static int reorderedPowerOf2(int n)
    {
 
        // Stores digits of N
        String str = Integer.toString(n);
        char[] Str = str.toCharArray();
 
        // Sort the string
        // ascending order
        Arrays.sort(Str);
 
        // Stores count of digits in N
        int sz = Str.length;
 
        // Generate all permutation and check if
        // the permutation if power of 2 or not
        do {
 
            // Update n
            n = Integer.parseInt(new String(Str));
 
            // If n is power of 2
            if (n > 0 && ((n & (n - 1)) == 0)) {
                return n;
            }
        } while (next_permutation(Str));
 
        return -1;
    }
 
    // Driver code
    public static void main(String[] args)
    {
        int n = 460;
        System.out.print(reorderedPowerOf2(n));
    }
}
 
// This code is contributed by Dharanendra L V.

Python3

# python program to implement
# the above approach
 
 
def next_permutation():
    global a
    i = len(a) - 2
    while not (i < 0 or int(a[i]) < int(a[i + 1])):
        i -= 1
    if i < 0:
        return False
 
    # else
    j = len(a) - 1
    while not (int(a[j]) > int(a[i])):
        j -= 1
    a[i], a[j] = a[j], a[i]        # swap
    # reverse elements from position i+1 till the end of the sequence
    a[i + 1:] = reversed(a[i + 1:])
    return True
 
# Function to rearrange the digits of N
# such that N become power of 2
 
 
def reorderedPowerOf2(n):
    global a
 
    # Sort the string
    # ascending order
    a = sorted(a)
 
    # Stores count of digits in N
    sz = len(a)
 
    # Generate all permutation and check if
    # the permutation if power of 2 or not
    while True:
 
        # Update n
        n = int("".join(a))
 
        # If n is power of 2
        if (n and not (n & (n - 1))):
            return n
        if not next_permutation():
            break
 
    return -1
 
 
# Driver Code
if __name__ == '__main__':
    n = 460
    a = [i for i in str(n)]
 
    print(reorderedPowerOf2(n))
 
# This code is contributed by mohit kumar 29

C#

// C# program to implement
// the above approach
using System;
using System.Collections.Generic;
class GFG {
    static void swap(char[] chars, int i, int j)
    {
        char ch = chars[i];
        chars[i] = chars[j];
        chars[j] = ch;
    }
 
    static void reverse(char[] chars, int start)
    {
        for (int i = start, j = chars.Length - 1; i < j;
             i++, j--) {
            swap(chars, i, j);
        }
    }
 
    // Function to find lexicographically next permutations
    // of a string. It returns true if the string could be
    // rearranged as a lexicographically greater permutation
    // else it returns false
    static bool next_permutation(char[] chars)
    {
 
        // Find largest index i such
        // that chars[i - 1] is less than chars[i]
        int i = chars.Length - 1;
        while (chars[i - 1] >= chars[i]) {
 
            // if i is first index of the string,
            // that means we are already at
            // highest possible permutation i.e.
            // string is sorted in desc order
            if (--i == 0) {
                return false;
            }
        }
 
        // if we reach here, substring chars[i..n)
        // is sorted in descending order
        // i.e. chars[i-1] < chars[i] >= chars[i+1] >=
        // chars[i+2] >= ... >= chars[n-1]
 
        // Find highest index j to the right of index i such
        // that chars[j] > chars[i–1]
        int j = chars.Length - 1;
        while (j > i && chars[j] <= chars[i - 1]) {
            j--;
        }
 
        // swap characters at index i-1 with index j
        swap(chars, i - 1, j);
 
        // reverse the substring chars[i..n) and return true
        reverse(chars, i);
 
        return true;
    }
 
    // Function to rearrange the digits of N
    // such that N become power of 2
    static int reorderedPowerOf2(int n)
    {
 
        // Stores digits of N
        string str = n.ToString();
        char[] Str = str.ToCharArray();
 
        // Sort the string
        // ascending order
        Array.Sort(Str);
 
        // Stores count of digits in N
        int sz = Str.Length;
 
        // Generate all permutation and check if
        // the permutation if power of 2 or not
        do {
 
            // Update n
            n = Convert.ToInt32(new string(Str));
 
            // If n is power of 2
            if (n > 0 && ((n & (n - 1)) == 0)) {
                return n;
            }
        } while (next_permutation(Str));
 
        return -1;
    }
 
    // Driver code
    static void Main()
    {
        int n = 460;
        Console.WriteLine(reorderedPowerOf2(n));
    }
}
 
// This code is contributed by divyeshrabadiya07.

Javascript

<script>
 
// JavaScript program to implement
// the above approach
 
function swap(chars,i,j)
{
    let ch = chars[i];
        chars[i] = chars[j];
        chars[j] = ch;
}
 
function reverse(chars,start)
{
    for (let i = start, j = chars.length - 1; i < j;
             i++, j--) {
            swap(chars, i, j);
        }
}
 
// Function to find lexicographically next permutations
// of a string. It returns true if the string could be
// rearranged as a lexicographically greater permutation
// else it returns false
function next_permutation(chars)
{
    // Find largest index i such
        // that chars[i - 1] is less than chars[i]
        let i = chars.length - 1;
        while (chars[i - 1] >= chars[i]) {
  
            // if i is first index of the string,
            // that means we are already at
            // highest possible permutation i.e.
            // string is sorted in desc order
            if (--i == 0) {
                return false;
            }
        }
  
        // if we reach here, substring chars[i..n)
        // is sorted in descending order
        // i.e. chars[i-1] < chars[i] >= chars[i+1] >=
        // chars[i+2] >= ... >= chars[n-1]
  
        // Find highest index j to the right of index i such
        // that chars[j] > chars[i–1]
        let j = chars.length - 1;
        while (j > i && chars[j] <= chars[i - 1]) {
            j--;
        }
  
        // swap characters at index i-1 with index j
        swap(chars, i - 1, j);
  
        // reverse the substring chars[i..n) and return true
        reverse(chars, i);
  
        return true;
}
 
// Function to rearrange the digits of N
// such that N become power of 2
function reorderedPowerOf2(n)
{
     // Stores digits of N
        let str = n.toString();
        let Str = str.split("");
  
        // Sort the string
        // ascending order
        Str.sort();
  
        // Stores count of digits in N
        let sz = Str.length;
  
        // Generate all permutation and check if
        // the permutation if power of 2 or not
        do {
  
            // Update n
            n = parseInt((Str).join(""));
  
            // If n is power of 2
            if (n > 0 && ((n & (n - 1)) == 0)) {
                return n;
            }
        } while (next_permutation(Str));
  
        return -1;
}
 
// Driver code
let n = 460;
document.write(reorderedPowerOf2(n));
 
 
// This code is contributed by patel2127
 
</script>
Producción

64

Complejidad de tiempo: O(log 10 N * (log 10 N)!) 
Espacio auxiliar: O(log 10 N)

Enfoque 2:

Crearemos una array de dígitos que almacene el conteo de dígitos del número dado, e iteraremos a través de potencias de 2 y verificaremos si alguna de las arrays de conteo de dígitos coincide con la array de conteo de dígitos de números dados.

A continuación se muestra la implementación del enfoque:

Java

// Java program to implement
// the above approach
import java.io.*;
import java.util.*;
class GFG {
 
    public static int reorderedPowerOf2(int N)
    {
        int[] arr = digitarr(N);
        // N is the given number
        // arr have the digit count of N
        for (int i = 0; i < 31; i++) {
            // check if arr matches with any digitcount
            // array of 2^i
            if (Arrays.equals(arr, digitarr(1 << i)))
                return (int)Math.pow(2, i);
        }
        return -1;
    }
    public static int[] digitarr(int n)
    {
        int[] res
            = new int[10]; // stores the digit count of n
        while (n > 0) {
            if (n % 10 != 0) {
                res[n % 10]++;
            }
            n /= 10;
        }
        return res;
    }
 
    // Driver code
    public static void main(String[] args)
    {
        int n = 460;
        System.out.print(reorderedPowerOf2(n));
    }
}
Producción

64

Publicación traducida automáticamente

Artículo escrito por bhavneet2000 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *