Cuente todas las posibles permutaciones de vocales de longitud N que se pueden generar en función de las condiciones dadas

Dado un número entero N , la tarea es contar el número de strings de longitud N que consisten en vocales minúsculas que se pueden generar según las siguientes condiciones:

  • Cada ‘a’ sólo puede ir seguida de una ‘e’ .
  • Cada ‘e’ solo puede ir seguida de una ‘a’ o una ‘i’.
  • Cada ‘i’ no puede ir seguida de otra ‘i’ .
  • Cada ‘o’ sólo puede ir seguida de una ‘i’ o una ‘u’ .
  • Cada ‘u’ sólo puede ir seguida de una ‘a’ .

Ejemplos:

Entrada: N = 1
Salida: 5
Explicación: Todas las strings que se pueden formar son: “a”, “e”, “i”, “o” y “u”.

Entrada: N = 2
Salida: 10
Explicación: Todas las strings que se pueden formar son: “ae”, “ea”, “ei”, “ia”, “ie”, “io”, “iu”, “oi”, “ou” y “ua”.

Enfoque: La idea para resolver este problema es visualizarlo como un problema gráfico . A partir de las reglas dadas se puede construir un gráfico dirigido , donde una arista de u a v significa que v se puede escribir inmediatamente después de u en las strings resultantes. El problema se reduce a encontrar el número de caminos de longitud N en el gráfico dirigido construido. Siga los pasos a continuación para resolver el problema:

  • Sean numeradas las vocales a, e, i, o, u como 0, 1, 2, 3, 4 respectivamente, y usando las dependencias que se muestran en el gráfico dado, convierta el gráfico en una relación de lista de adyacencia donde el índice significa la vocal y la lista en ese índice significa un borde de ese índice a los caracteres dados en la lista.

  • Inicialice una array 2D dp[N + 1][5] donde dp[N][char] denota el número de caminos dirigidos de longitud N que terminan en un vértice particular char .
  • Inicialice dp[i][char] para todos los caracteres como 1 , ya que una string de longitud 1 solo constará de una vocal en la string.
  • Para todas las longitudes posibles, digamos i , recorra los bordes dirigidos usando la variable u y realice los siguientes pasos:
    • Actualice el valor de dp[i + 1][u] como 0 .
    • Atraviese la lista de adyacencia del Node u e incremente el valor de dp[i][u] por dp[i][v] , que almacena la suma de todos los valores de modo que haya un borde dirigido desde el Node u al Node v .
  • Después de completar los pasos anteriores, la suma de todos los valores dp[N][i] , donde i pertenece al rango [0, 5) , dará el número total de permutaciones de vocales.

A continuación se muestra la implementación del enfoque anterior:

C++

// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the number of
// vowel permutations possible
int countVowelPermutation(int n)
{
     
    // To avoid the large output value
    int MOD = (int)(1e9 + 7);
 
    // Initialize 2D dp array
    long dp[n + 1][5];
     
    // Initialize dp[1][i] as 1 since
    // string of length 1 will consist
    // of only one vowel in the string
    for(int i = 0; i < 5; i++)
    {
        dp[1][i] = 1;
    }
     
    // Directed graph using the
    // adjacency matrix
    vector<vector<int>> relation = {
        { 1 }, { 0, 2 },
        { 0, 1, 3, 4 },
        { 2, 4 }, { 0 }
    };
 
    // Iterate over the range [1, N]
    for(int i = 1; i < n; i++)
    {
         
        // Traverse the directed graph
        for(int u = 0; u < 5; u++)
        {
            dp[i + 1][u] = 0;
 
            // Traversing the list
            for(int v : relation[u])
            {
                 
                // Update dp[i + 1][u]
                dp[i + 1][u] += dp[i][v] % MOD;
            }
        }
    }
 
    // Stores total count of permutations
    long ans = 0;
 
    for(int i = 0; i < 5; i++)
    {
        ans = (ans + dp[n][i]) % MOD;
    }
 
    // Return count of permutations
    return (int)ans;
}
 
// Driver code
int main()
{
    int N = 2;
     
    cout << countVowelPermutation(N);
}
 
// This code is contributed by Mohit kumar 29

Java

// Java program for the above approach
 
import java.io.*;
import java.util.*;
class GFG {
 
    // Function to find the number of
    // vowel permutations possible
    public static int
    countVowelPermutation(int n)
    {
        // To avoid the large output value
        int MOD = (int)(1e9 + 7);
 
        // Initialize 2D dp array
        long[][] dp = new long[n + 1][5];
 
        // Initialize dp[1][i] as 1 since
        // string of length 1 will consist
        // of only one vowel in the string
        for (int i = 0; i < 5; i++) {
            dp[1][i] = 1;
        }
 
        // Directed graph using the
        // adjacency matrix
        int[][] relation = new int[][] {
            { 1 }, { 0, 2 },
            { 0, 1, 3, 4 },
            { 2, 4 }, { 0 }
        };
 
        // Iterate over the range [1, N]
        for (int i = 1; i < n; i++) {
 
            // Traverse the directed graph
            for (int u = 0; u < 5; u++) {
                dp[i + 1][u] = 0;
 
                // Traversing the list
                for (int v : relation[u]) {
 
                    // Update dp[i + 1][u]
                    dp[i + 1][u] += dp[i][v] % MOD;
                }
            }
        }
 
        // Stores total count of permutations
        long ans = 0;
 
        for (int i = 0; i < 5; i++) {
            ans = (ans + dp[n][i]) % MOD;
        }
 
        // Return count of permutations
        return (int)ans;
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int N = 2;
        System.out.println(
            countVowelPermutation(N));
    }
}

Python3

# Python 3 program for the above approach
 
# Function to find the number of
# vowel permutations possible
def countVowelPermutation(n):
   
    # To avoid the large output value
    MOD =  1e9 + 7
 
    # Initialize 2D dp array
    dp = [[0 for i in range(5)] for j in range(n + 1)]
     
    # Initialize dp[1][i] as 1 since
    # string of length 1 will consist
    # of only one vowel in the string
    for i in range(5):
        dp[1][i] = 1
     
    # Directed graph using the
    # adjacency matrix
    relation = [[1],[0, 2], [0, 1, 3, 4], [2, 4],[0]]
 
    # Iterate over the range [1, N]
    for i in range(1, n, 1):
       
        # Traverse the directed graph
        for u in range(5):
            dp[i + 1][u] = 0
 
            # Traversing the list
            for v in relation[u]:
               
                # Update dp[i + 1][u]
                dp[i + 1][u] += dp[i][v] % MOD
 
    # Stores total count of permutations
    ans = 0
    for i in range(5):
        ans = (ans + dp[n][i]) % MOD
 
    # Return count of permutations
    return int(ans)
 
# Driver code
if __name__ == '__main__':
    N = 2
    print(countVowelPermutation(N))
     
    # This code is contributed by bgangwar59.

C#

// C# program to find absolute difference
// between the sum of all odd frequenct and
// even frequent elements in an array
using System;
using System.Collections.Generic;
class GFG {
     
    // Function to find the number of
    // vowel permutations possible
    static int countVowelPermutation(int n)
    {
       
        // To avoid the large output value
        int MOD = (int)(1e9 + 7);
  
        // Initialize 2D dp array
        long[,] dp = new long[n + 1, 5];
  
        // Initialize dp[1][i] as 1 since
        // string of length 1 will consist
        // of only one vowel in the string
        for (int i = 0; i < 5; i++) {
            dp[1, i] = 1;
        }
  
        // Directed graph using the
        // adjacency matrix
        List<List<int>> relation = new List<List<int>>();
        relation.Add(new List<int> { 1 });
        relation.Add(new List<int> { 0, 2 });
        relation.Add(new List<int> { 0, 1, 3, 4 });
        relation.Add(new List<int> { 2, 4 });
        relation.Add(new List<int> { 0 });
  
        // Iterate over the range [1, N]
        for (int i = 1; i < n; i++)
        {
  
            // Traverse the directed graph
            for (int u = 0; u < 5; u++)
            {
                dp[i + 1, u] = 0;
  
                // Traversing the list
                foreach(int v in relation[u])
                {
  
                    // Update dp[i + 1][u]
                    dp[i + 1, u] += dp[i, v] % MOD;
                }
            }
        }
  
        // Stores total count of permutations
        long ans = 0;
  
        for (int i = 0; i < 5; i++)
        {
            ans = (ans + dp[n, i]) % MOD;
        }
  
        // Return count of permutations
        return (int)ans;
    }
 
  // Driver code
  static void Main() {
    int N = 2;
    Console.WriteLine(countVowelPermutation(N));
  }
}
 
// This code is contributed by divyesh072019.

Javascript

<script>
 
// JavaScript program to implement
// the above approach
 
    // Function to find the number of
    // vowel permutations possible
    function
    countVowelPermutation(n)
    {
        // To avoid the large output value
        let MOD = (1e9 + 7);
  
        // Initialize 2D dp array
        let dp = new Array(n + 1);
         
        // Loop to create 2D array using 1D array
        for (var i = 0; i < dp.length; i++) {
            dp[i] = new Array(2);
        }
  
        // Initialize dp[1][i] as 1 since
        // string of length 1 will consist
        // of only one vowel in the string
        for (let i = 0; i < 5; i++) {
            dp[1][i] = 1;
        }
  
        // Directed graph using the
        // adjacency matrix
        let relation = [
            [ 1 ], [ 0, 2 ],
            [ 0, 1, 3, 4 ],
            [ 2, 4 ], [ 0 ]
        ];
  
        // Iterate over the range [1, N]
        for (let i = 1; i < n; i++) {
  
            // Traverse the directed graph
            for (let u = 0; u < 5; u++) {
                dp[i + 1][u] = 0;
  
                // Traversing the list
                for (let v in relation[u]) {
  
                    // Update dp[i + 1][u]
                    dp[i + 1][u] += dp[i][v] % MOD;
                }
            }
        }
  
        // Stores total count of permutations
        let ans = 0;
  
        for (let i = 0; i < 5; i++) {
            ans = (ans + dp[n][i]) % MOD;
        }
  
        // Return count of permutations
        return ans;
    }
 
      
// Driver code
         
    let N = 2;
    document.write(
            countVowelPermutation(N));
 
</script>
Producción: 

10

 

Complejidad temporal: O(N)
Espacio auxiliar: O(N)

Publicación traducida automáticamente

Artículo escrito por rohit2sahu y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *