Dada una array arr[] de tamaño N , la tarea es contar el número de arrays que tienen al menos K elementos mayores que el XOR de todos los elementos de la array, generados al realizar las siguientes operaciones X veces.
- Seleccione el primer o el último elemento de la array dada.
- Incremente el elemento seleccionado en 1 o elimine el elemento seleccionado.
Ejemplos:
Entrada: arr[] = {10, 2, 10, 5}, X = 3, K = 3
Salida: 1
Explicación:
XOR de la array dada = 7. La única array posible que satisface la condición es {10, 2, 10 , 8}, obtenido al incrementar tres veces el último elemento de la array.Entrada: arr[] = {3, 3, 4}, X = 3, K = 2
Salida: 3
Enfoque: la idea es utilizar el enfoque de retroceso para probar recursivamente todos los movimientos posibles e incrementar el conteo cuando se obtiene la array requerida. Los movimientos posibles son:
- Inicialice una variable, digamos xorValue , para calcular el XOR de la array original .
- Inicialice una variable, digamos count , para almacenar el recuento final de las arrays requeridas.
- Intente recursivamente las siguientes cuatro posibilidades e incremente el conteo cuando se obtenga la array requerida:
- Elimina el primer elemento de la array.
- Elimina el último elemento de la array.
- Incrementa el primer elemento de la array en uno.
- Incrementa el último elemento de la array en uno.
- Imprime el conteo final como la respuesta.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Stores the final answer int ans = 0; // Utility function to count arrays // having at least K elements exceeding // XOR of all given array elements void countArraysUtil(vector<int>& arr, int X, int K, int xorVal) { // If no operations are left if (X == 0) { // Stores the count of // possible arrays int cnt = 0; // Count array elements are // greater than XOR for (int i = 0; i < arr.size(); i++) { if (arr[i] > xorVal) cnt++; } if (cnt >= K) ans++; return; } // Stores first element int temp = arr[0]; // Delete first element arr.erase(arr.begin()); // Recursive call countArraysUtil(arr, X - 1, K, xorVal); // Insert first element into vector arr.insert(arr.begin(), temp); // Stores the last element temp = arr.back(); // Remove last element from vector arr.pop_back(); // Recursive call countArraysUtil(arr, X - 1, K, xorVal); // Push last element into vector arr.push_back(temp); // Increment first element arr[0]++; // Recursive call countArraysUtil(arr, X - 1, K, xorVal); // Decrement first element arr[0]--; // Increment last element arr[arr.size() - 1]++; // Recursive call countArraysUtil(arr, X - 1, K, xorVal); // Decrement last element arr[arr.size() - 1]--; } // Function to find the count of // arrays having atleast K elements // greater than XOR of array void countArrays(vector<int>& arr, int X, int K) { // Stores the XOR value // of original array int xorVal = 0; // Traverse the vector for (int i = 0; i < arr.size(); i++) xorVal = xorVal ^ arr[i]; countArraysUtil(arr, X, K, xorVal); // Print the answer cout << ans; } // Driver Code int main() { // Given vector vector<int> arr = { 10, 2, 10, 5 }; // Given value of X & K int X = 3, K = 3; countArrays(arr, X, K); return 0; }
Java
// Java program for the above approach import java.util.ArrayList; class GFG{ // Stores the final answer static int ans = 0; // Utility function to count arrays // having at least K elements exceeding // XOR of all given array elements public static void countArraysUtil(ArrayList<Integer> arr, int X, int K, int xorVal) { // If no operations are left if (X == 0) { // Stores the count of // possible arrays int cnt = 0; // Count array elements are // greater than XOR for (int i = 0; i < arr.size(); i++) { if (arr.get(i) > xorVal) cnt++; } if (cnt >= K) ans++; return; } // Stores first element int temp = arr.get(0); // Delete first element arr.remove(0); // Recursive call countArraysUtil(arr, X - 1, K, xorVal); // Insert first element into vector arr.add(0, temp); // Stores the last element temp = arr.get(arr.size() - 1); // Remove last element from vector arr.remove(arr.size() - 1); // Recursive call countArraysUtil(arr, X - 1, K, xorVal); // Push last element into vector arr.add(temp); // Increment first element arr.set(0, arr.get(0) + 1); // Recursive call countArraysUtil(arr, X - 1, K, xorVal); // Decrement first element arr.set(0, arr.get(0) - 1); // Increment last element arr.set(arr.size() - 1, arr.get(arr.size() - 1) + 1); // Recursive call countArraysUtil(arr, X - 1, K, xorVal); // Decrement last element arr.set(arr.size() - 1, arr.get(arr.size() - 1) - 1); } // Function to find the count of // arrays having atleast K elements // greater than XOR of array public static void countArrays(ArrayList<Integer> arr, int X, int K) { // Stores the XOR value // of original array int xorVal = 0; // Traverse the vector for (int i = 0; i < arr.size(); i++) xorVal = xorVal ^ arr.get(i); countArraysUtil(arr, X, K, xorVal); // Print the answer System.out.println(ans); } // Driver Code public static void main(String arg[]) { // Given vector int[] input = {10, 2, 10, 5}; // Convert the input as ArrayList ArrayList<Integer> arr = new ArrayList<Integer>(); for(int i : input){ arr.add(i); } // Given value of X & K int X = 3, K = 3; countArrays(arr, X, K); } } // This code is contributed by gfgking.
Python3
# Python program for the above approach # Stores the final answer ans = 0 # Utility function to count arrays # having at least K elements exceeding # XOR of all given array elements def countArraysUtil( arr, X, K, xorVal): global ans # If no operations are left if (X == 0): # Stores the count of # possible arrays cnt = 0 # Count array elements are # greater than XOR for i in range(len(arr)): if (arr[i] > xorVal): cnt += 1 if (cnt >= K): ans += 1 return # Stores first element temp = arr[0] # Delete first element arr.pop(0) # Recursive call countArraysUtil(arr, X - 1, K, xorVal) # Insert first element into vector arr.insert(0, temp) # Stores the last element temp = arr[-1] # Remove last element from vector arr.pop() # Recursive call countArraysUtil(arr, X - 1, K, xorVal) # Push last element into vector arr.append(temp) # Increment first element arr[0] += 1 # Recursive call countArraysUtil(arr, X - 1,K, xorVal) # Decrement first element arr[0] -= 1 # Increment last element arr[len(arr) - 1] += 1 # Recursive call countArraysUtil(arr, X - 1, K, xorVal) # Decrement last element arr[len(arr) - 1] -= 1 # Function to find the count of # arrays having atleast K elements # greater than XOR of array def countArrays(arr, X, K): # Stores the XOR value # of original array xorVal = 0 # Traverse the vector for i in range(len(arr)): xorVal = xorVal ^ arr[i] countArraysUtil(arr, X, K, xorVal) # Print the answer print(ans) # Driver Code # Given vector arr = [ 10, 2, 10, 5 ] # Given value of X & K X = 3 K = 3 countArrays(arr, X, K) # This code is contributed by rohitsingh07052.
C#
// C# program for the above approach using System; using System.Collections.Generic; class GFG { // Stores the final answer static int ans = 0; // Utility function to count arrays // having at least K elements exceeding // XOR of all given array elements static void countArraysUtil(List<int> arr, int X, int K, int xorVal) { // If no operations are left if (X == 0) { // Stores the count of // possible arrays int cnt = 0; // Count array elements are // greater than XOR for (int i = 0; i < arr.Count; i++) { if (arr[i] > xorVal) cnt++; } if (cnt >= K) ans++; return; } // Stores first element int temp = arr[0]; // Delete first element arr.RemoveAt(0); // Recursive call countArraysUtil(arr, X - 1, K, xorVal); // Insert first element into vector arr.Insert(0, temp); // Stores the last element temp = arr[arr.Count - 1]; // Remove last element from vector arr.RemoveAt(arr.Count - 1); // Recursive call countArraysUtil(arr, X - 1, K, xorVal); // Push last element into vector arr.Add(temp); // Increment first element arr[0]++; // Recursive call countArraysUtil(arr, X - 1, K, xorVal); // Decrement first element arr[0]--; // Increment last element arr[arr.Count - 1]++; // Recursive call countArraysUtil(arr, X - 1, K, xorVal); // Decrement last element arr[arr.Count - 1]--; } // Function to find the count of // arrays having atleast K elements // greater than XOR of array static void countArrays(List<int> arr, int X, int K) { // Stores the XOR value // of original array int xorVal = 0; // Traverse the vector for (int i = 0; i < arr.Count; i++) xorVal = xorVal ^ arr[i]; countArraysUtil(arr, X, K, xorVal); // Print the answer Console.Write(ans); } // Driver Code public static void Main() { // Given vector List<int> arr = new List<int>() { 10, 2, 10, 5 }; // Given value of X & K int X = 3, K = 3; countArrays(arr, X, K); } } // This code is contributed by chitranayal.
Javascript
<script> // JavaScript program for the above approach // Stores the final answer let ans = 0; // Utility function to count arrays // having at least K elements exceeding // XOR of all given array elements function countArraysUtil(arr,X,K,xorVal) { // If no operations are left if (X == 0) { // Stores the count of // possible arrays let cnt = 0; // Count array elements are // greater than XOR for (let i = 0; i < arr.length; i++) { if (arr[i] > xorVal) cnt++; } if (cnt >= K) ans++; return; } // Stores first element let temp = arr[0]; // Delete first element arr.shift(); // Recursive call countArraysUtil(arr, X - 1, K, xorVal); // Insert first element into vector arr.unshift(temp); // Stores the last element temp = arr[arr.length-1]; // Remove last element from vector arr.pop(); // Recursive call countArraysUtil(arr, X - 1, K, xorVal); // Push last element into vector arr.push(temp); // Increment first element arr[0]++; // Recursive call countArraysUtil(arr, X - 1, K, xorVal); // Decrement first element arr[0]--; // Increment last element arr[arr.length - 1]++; // Recursive call countArraysUtil(arr, X - 1, K, xorVal); // Decrement last element arr[arr.length - 1]--; } // Function to find the count of // arrays having atleast K elements // greater than XOR of array function countArrays(arr,X,K) { // Stores the XOR value // of original array let xorVal = 0; // Traverse the vector for (let i = 0; i < arr.length; i++) xorVal = xorVal ^ arr[i]; countArraysUtil(arr, X, K, xorVal); // Print the answer document.write(ans); } // Driver Code let arr=[10, 2, 10, 5]; // Given value of X & K let X = 3, K = 3; countArrays(arr, X, K); // This code is contributed by avanitrachhadiya2155 </script>
1
Complejidad de Tiempo: O(4 K * N)
Espacio Auxiliar: O(1)