Encuentre el número de pares distintos de vértices que tienen una distancia de exactamente k en un árbol

Dado un entero k y un árbol con n Nodes. La tarea es contar el número de pares distintos de vértices que tienen una distancia de exactamente k .

Ejemplos: 

Entrada: k = 2 
 

Salida: 4
Entrada: k = 3 
 

Salida: 2  

Enfoque: Este problema se puede resolver mediante programación dinámica. Para cada vértice v del árbol, calculamos valores d[v][lev] (0 <= lev <= k). Este valor indica el número de vértices que tienen la distancia lev de v. Tenga en cuenta que d[v][0] = 1. 
Luego calculamos la respuesta. Para cualquier vértice v, el número de pares será un producto del número de vértices en el nivel j – 1 y el nivel k – j.

A continuación se muestra la implementación del enfoque anterior:  

C++

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
#define N 5005
 
// To store vertices and value of k
int n, k;
 
vector<int> gr[N];
 
// To store number vertices at a level i
int d[N][505];
 
// To store the final answer
int ans = 0;
 
// Function to add an edge between two nodes
void Add_edge(int x, int y)
{
    gr[x].push_back(y);
    gr[y].push_back(x);
}
 
// Function to find the number of distinct
// pairs of the vertices which have a distance
// of exactly k in a tree
void dfs(int v, int par)
{
    // At level zero vertex itself is counted
    d[v][0] = 1;
    for (auto i : gr[v]) {
        if (i != par) {
            dfs(i, v);
 
            // Count the pair of vertices at
            // distance k
            for (int j = 1; j <= k; j++)
                ans += d[i][j - 1] * d[v][k - j];
 
            // For all levels count vertices
            for (int j = 1; j <= k; j++)
                d[v][j] += d[i][j - 1];
        }
    }
}
 
// Driver code
int main()
{
    n = 5, k = 2;
 
    // Add edges
    Add_edge(1, 2);
    Add_edge(2, 3);
    Add_edge(3, 4);
    Add_edge(2, 5);
 
    // Function call
    dfs(1, 0);
 
    // Required answer
    cout << ans;
 
    return 0;
}

Java

// Java implementation of the approach
import java.util.*;
 
class GFG
{
    static final int N = 5005;
 
    // To store vertices and value of k
    static int n, k;
 
    static Vector<Integer>[] gr = new Vector[N];
 
    // To store number vertices at a level i
    static int[][] d = new int[N][505];
 
    // To store the final answer
    static int ans = 0;
 
    // Function to add an edge between two nodes
    static void Add_edge(int x, int y)
    {
        gr[x].add(y);
        gr[y].add(x);
    }
 
    // Function to find the number of distinct
    // pairs of the vertices which have a distance
    // of exactly k in a tree
    static void dfs(int v, int par)
    {
        // At level zero vertex itself is counted
        d[v][0] = 1;
        for (Integer i : gr[v])
        {
            if (i != par)
            {
                dfs(i, v);
 
                // Count the pair of vertices at
                // distance k
                for (int j = 1; j <= k; j++)
                    ans += d[i][j - 1] * d[v][k - j];
 
                // For all levels count vertices
                for (int j = 1; j <= k; j++)
                    d[v][j] += d[i][j - 1];
            }
        }
    }
 
    // Driver code
    public static void main(String[] args)
    {
        n = 5;
        k = 2;
        for (int i = 0; i < N; i++)
            gr[i] = new Vector<Integer>();
         
        // Add edges
        Add_edge(1, 2);
        Add_edge(2, 3);
        Add_edge(3, 4);
        Add_edge(2, 5);
 
        // Function call
        dfs(1, 0);
 
        // Required answer
        System.out.print(ans);
 
    }
}
 
// This code is contributed by PrinciRaj1992

Python3

# Python3 implementation of the approach
N = 5005
 
# To store vertices and value of k
n, k = 0, 0
 
gr = [[] for i in range(N)]
 
# To store number vertices at a level i
d = [[0 for i in range(505)]
        for i in range(N)]
 
# To store the final answer
ans = 0
 
# Function to add an edge between two nodes
def Add_edge(x, y):
    gr[x].append(y)
    gr[y].append(x)
 
# Function to find the number of distinct
# pairs of the vertices which have a distance
# of exactly k in a tree
def dfs(v, par):
    global ans
     
    # At level zero vertex itself is counted
    d[v][0] = 1
    for i in gr[v]:
        if (i != par):
            dfs(i, v)
 
            # Count the pair of vertices at
            # distance k
            for j in range(1, k + 1):
                ans += d[i][j - 1] * d[v][k - j]
 
            # For all levels count vertices
            for j in range(1, k + 1):
                d[v][j] += d[i][j - 1]
 
# Driver code
n = 5
k = 2
 
# Add edges
Add_edge(1, 2)
Add_edge(2, 3)
Add_edge(3, 4)
Add_edge(2, 5)
 
# Function call
dfs(1, 0)
 
# Required answer
print(ans)
 
# This code is contributed by Mohit Kumar

C#

// C# implementation of the approach
using System;
using System.Collections.Generic;
 
class GFG
{
    static readonly int N = 5005;
 
    // To store vertices and value of k
    static int n, k;
 
    static List<int>[] gr = new List<int>[N];
 
    // To store number vertices at a level i
    static int[,] d = new int[N, 505];
 
    // To store the readonly answer
    static int ans = 0;
 
    // Function to add an edge between two nodes
    static void Add_edge(int x, int y)
    {
        gr[x].Add(y);
        gr[y].Add(x);
    }
 
    // Function to find the number of distinct
    // pairs of the vertices which have a distance
    // of exactly k in a tree
    static void dfs(int v, int par)
    {
        // At level zero vertex itself is counted
        d[v, 0] = 1;
        foreach (int i in gr[v])
        {
            if (i != par)
            {
                dfs(i, v);
 
                // Count the pair of vertices at
                // distance k
                for (int j = 1; j <= k; j++)
                    ans += d[i, j - 1] * d[v, k - j];
 
                // For all levels count vertices
                for (int j = 1; j <= k; j++)
                    d[v, j] += d[i, j - 1];
            }
        }
    }
 
    // Driver code
    public static void Main(String[] args)
    {
        n = 5;
        k = 2;
        for (int i = 0; i < N; i++)
            gr[i] = new List<int>();
         
        // Add edges
        Add_edge(1, 2);
        Add_edge(2, 3);
        Add_edge(3, 4);
        Add_edge(2, 5);
 
        // Function call
        dfs(1, 0);
 
        // Required answer
        Console.Write(ans);
 
    }
}
 
// This code is contributed by Rajput-Ji

PHP

<?php
// PHP implementation of the approach
$N = 5005;
 
// To store vertices and value of k
$gr = array_fill(0, $N, array());
 
// To store number vertices
// at a level i
$d = array_fill(0, $N,
     array_fill(0, 505, 0));
 
// To store the final answer
$ans = 0;
 
// Function to add an edge between
// two nodes
function Add_edge($x, $y)
{
    global $gr;
    array_push($gr[$x], $y);
    array_push($gr[$y], $x);
}
 
// Function to find the number of distinct
// pairs of the vertices which have a
// distance of exactly k in a tree
function dfs($v, $par)
{
    global $d, $ans, $k, $gr;
     
    // At level zero vertex itself
    // is counted
    $d[$v][0] = 1;
    foreach ($gr[$v] as &$i)
    {
        if ($i != $par)
        {
            dfs($i, $v);
 
            // Count the pair of vertices
            // at distance k
            for ($j = 1; $j <= $k; $j++)
                $ans += $d[$i][$j - 1] *
                        $d[$v][$k - $j];
 
            // For all levels count vertices
            for ($j = 1; $j <= $k; $j++)
                $d[$v][$j] += $d[$i][$j - 1];
        }
    }
}
 
// Driver code
$n = 5;
$k = 2;
 
// Add edges
Add_edge(1, 2);
Add_edge(2, 3);
Add_edge(3, 4);
Add_edge(2, 5);
 
// Function call
dfs(1, 0);
 
// Required answer
echo $ans;
 
// This code is contributed by mits
?>

Javascript

<script>
 
// Javascript implementation of the approach
let N = 5005;
 
// To store vertices and value of k
let n, k;
let gr = new Array(N);
 
// To store number vertices at a level i
let d = new Array(N);
for(let i = 0 ; i < N; i++)
{
    d[i] = new Array(505);
    for(let j = 0; j < 505; j++)
    {
        d[i][j] = 0;
    }
}
 
// To store the final answer
let ans = 0;
 
// Function to add an edge between two nodes
function Add_edge(x, y)
{
    gr[x].push(y);
    gr[y].push(x);
}
 
// Function to find the number of distinct
// pairs of the vertices which have a distance
// of exactly k in a tree
function dfs(v, par)
{
     
    // At level zero vertex itself is counted
    d[v][0] = 1;
    for(let i = 0; i < gr[v].length; i++)
    {
        if (gr[v][i] != par)
        {
            dfs(gr[v][i], v);
             
            // Count the pair of vertices at
            // distance k
            for(let j = 1; j <= k; j++)
                ans += d[gr[v][i]][j - 1] * d[v][k - j];
             
            // For all levels count vertices
            for(let j = 1; j <= k; j++)
                d[v][j] += d[gr[v][i]][j - 1];
        }
    }
}
 
// Driver code
n = 5;
k = 2;
for(let i = 0; i < N; i++)
    gr[i] = [];
 
// Add edges
Add_edge(1, 2);
Add_edge(2, 3);
Add_edge(3, 4);
Add_edge(2, 5);
 
// Function call
dfs(1, 0);
 
// Required answer
document.write(ans);
 
// This code is contributed by unknown2108
 
</script>
Producción: 

4

 

Complejidad de tiempo: O(N)

Espacio Auxiliar: O(N * 505)

Publicación traducida automáticamente

Artículo escrito por pawan_asipu y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *