Generando grandes números de Fibonacci usando la biblioteca boost

En nuestra publicación anterior sobre series de Fibonacci , hemos visto muchos enfoques para generar números de Fibonacci. En este enfoque, generaremos números de Fibonacci con la ayuda de la biblioteca boost . El programa simplemente usa la biblioteca de impulso «boost/multiprecision/cpp_int.hpp» en la que se define big_int . Los números de Fibonacci más allá del rango de long long int también se pueden generar utilizando la biblioteca boost. A continuación se muestra la implementación de C++ para generar números de fibonacci utilizando la biblioteca boost.
 

CPP

// C++ implementation to generate large
// number of fibonacci series using the
// boost multiprecision library
#include <bits/stdc++.h>
#include <boost/multiprecision/cpp_int.hpp>
using big_int = boost::multiprecision::cpp_int;
using namespace std;
 
// function to generate first n
// fibonacci numbers
int fib(unsigned int n)
{
    // seed values
    // 0th and 1st number of the
    // series are 0 and 1
    big_int a = 0;
    big_int b = 1;
    cout << "Term 1 is : " << a << endl;
    cout << "Term 2 is : " << b << endl;
     
    for (unsigned int i = 2; i < n; ++i)
    {
        const big_int c = a + b;
        cout << "Term "<< i + 1 << " is : " << c << endl;
        a = b;
        b = c;
    }
}
 
// Driver code
int main()
{
    unsigned int n = 30;
     
    // function calling
    fib(n);
     
    return 0;
}

Java

// Java implementation to generate large
// number of fibonacci series using the 
// boost multiprecision library
public class GFG
{
   
    // function to generate first n
    // fibonacci numbers
    static void fib(int n)
    {
       
        // seed values
        // 0th and 1st number of the
        // series are 0 and 1
        int a = 0;
        int b = 1;
        System.out.println("Term 1 is : " + a); 
        System.out.println("Term 2 is : " + b);  
           
        for (int i = 2; i < n; ++i)
        {
            int c = a + b;
            System.out.println("Term " + (i + 1) + " is : " + c);
            a = b;
            b = c;
        }
    }
 
  // Driver code
    public static void main(String[] args)
    {
        int n = 30;
       
        // function calling
        fib(n);
    }
}
 
// This code is contributed by divyeshrabadiya07.

Python3

# Python3 implementation to generate large
# number of fibonacci series using the 
# boost multiprecision library
 
# function to generate first n
# fibonacci numbers
def fib( n):
   
    # seed values
    # 0th and 1st number of the
    # series are 0 and 1
    a = 0;
    b = 1;
    print("Term 1 is : " + str(a)); 
    print("Term 2 is : " + str(b));  
    for i in range(2, n):
        c = a + b;
        print("Term " + str(i + 1) + " is : " + str(c));
        a = b;
        b = c;
     
# Driver code
if __name__=='__main__':
    n = 30;
   
    # function calling
    fib(n);
 
# This code is contributed by rutvik_56.

C#

// C# implementation to generate large
// number of fibonacci series using the 
// boost multiprecision library
using System;
class GFG {
     
    // function to generate first n
    // fibonacci numbers
    static void fib(int n)
    {
        
        // seed values
        // 0th and 1st number of the
        // series are 0 and 1
        int a = 0;
        int b = 1;
        Console.WriteLine("Term 1 is : " + a); 
        Console.WriteLine("Term 2 is : " + b);  
        for (int i = 2; i < n; ++i)
        {
            int c = a + b;
            Console.WriteLine("Term " + (i + 1) + " is : " + c);
            a = b;
            b = c;
        }
    }
     
  // Driver code
  static void Main() {
    int n = 30;
        
    // function calling
    fib(n);
  }
}
 
// This code is contributed by divyesh072019

Javascript

<script>
    // Javascript implementation to generate large
    // number of fibonacci series using the
    // boost multiprecision library
     
    // function to generate first n
    // fibonacci numbers
    function fib(n)
    {
         
        // seed values
        // 0th and 1st number of the
        // series are 0 and 1
        let a = 0;
        let b = 1;
        document.write("Term 1 is : " + a + "</br>");
        document.write("Term 2 is : " + b + "</br>"); 
        for (let i = 2; i < n; ++i)
        {
            let c = a + b;
            document.write("Term " + (i + 1) + " is : " + c + "</br>");
            a = b;
            b = c;
        }
    }
     
    let n = 30;
         
    // function calling
    fib(n);
     
    // This code is contributed by mukesh07.
</script>

Producción : 
 

Term 1 is : 0
Term 2 is : 1
Term 3 is : 1
Term 4 is : 2
Term 5 is : 3
Term 6 is : 5
Term 7 is : 8
Term 8 is : 13
Term 9 is : 21
Term 10 is : 34
Term 11 is : 55
Term 12 is : 89
Term 13 is : 144
Term 14 is : 233
Term 15 is : 377
Term 16 is : 610
Term 17 is : 987
Term 18 is : 1597
Term 19 is : 2584
Term 20 is : 4181
Term 21 is : 6765
Term 22 is : 10946
Term 23 is : 17711
Term 24 is : 28657
Term 25 is : 46368
Term 26 is : 75025
Term 27 is : 121393
Term 28 is : 196418
Term 29 is : 317811
Term 30 is : 514229

Publicación traducida automáticamente

Artículo escrito por ajay0007 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *