Compruebe si la frecuencia de los caracteres en una string hace la secuencia de Fibonacci

Dada una string con alfabetos ingleses en minúsculas. La tarea es verificar si la frecuencia de los caracteres en la string se puede organizar como una serie de Fibonacci. En caso afirmativo, escriba «SI», de lo contrario escriba «NO».
Nota: 
 

  • Las frecuencias se pueden organizar de cualquier forma para formar la serie de Fibonacci.
  • La serie de Fibonacci comienza desde 1. Esa es la serie es 1,1,2,3,5, …..

Ejemplos
 

Input : str = "abeeedd"
Output : YES
Frequency of 'a' => 1
Frequency of 'b' => 1
Frequency of 'e' => 3
Frequency of 'd' => 2
These frequencies are first 4 terms of 
Fibonacci series => {1, 1, 2, 3}

Input : str = "dzzddz"
Output : NO
Frequencies are not in Fibonacci series

Acercarse: 
 

  • Almacene las frecuencias de cada carácter de la string en un mapa. Deje que el tamaño del mapa sea  norte   después de almacenar frecuencias.
  • Luego, haz un vector e inserta los primeros ‘n’ elementos de la serie de Fibonacci en este vector.
  • Luego, compare cada elemento del vector con los valores del mapa. Si ambos elementos del vector y los valores del mapa son iguales, imprima ‘SÍ’, de lo contrario imprima ‘NO’.

A continuación se muestra la implementación del enfoque anterior:
 

C++

// C++ program to check whether frequency of
// characters in a string makes
// Fibonacci Sequence
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to check if the frequencies
// are in Fibonacci series
string isFibonacci(string s)
{
    // map to store the
    // frequencies of character
    map<char, int> m;
 
    for (int i = 0; i < s.length(); i++) {
        m[s[i]]++;
    }
 
    // Vector to store first n
    // fibonacci numbers
    vector<int> v;
 
    // Get the size of the map
    int n = m.size();
 
    // a and b are first and second terms of
    // fibonacci series
    int a = 1, b = 1;
 
    int c;
    v.push_back(a);
    v.push_back(b);
 
    // vector v contains elements of fibonacci series
    for (int i = 0; i < n - 2; i++) {
        v.push_back(a + b);
        c = a + b;
        a = b;
        b = c;
    }
 
    int flag = 1;
    int i = 0;
 
    // Compare vector elements with values in Map
    for (auto itr = m.begin(); itr != m.end(); itr++) {
        if (itr->second != v[i]) {
            flag = 0;
            break;
        }
 
        i++;
    }
 
    if (flag == 1)
        return "YES";
    else
        return "NO";
}
 
// Driver code
int main()
{
    string s = "abeeedd";
 
    cout << isFibonacci(s);
 
    return 0;
}

Java

// Java program to check whether frequency of
// characters in a string makes
// Fibonacci Sequence
import java.util.HashMap;
import java.util.Vector;
 
class GFG
{
 
    // Function to check if the frequencies
    // are in Fibonacci series
    static String isFibonacci(String s)
    {
 
        // map to store the
        // frequencies of character
        HashMap<Character,
                Integer> m = new HashMap<>();
        for (int i = 0; i < s.length(); i++)
            m.put(s.charAt(i),
            m.get(s.charAt(i)) == null ? 1 :
            m.get(s.charAt(i)) + 1);
 
        // Vector to store first n
        // fibonacci numbers
        Vector<Integer> v = new Vector<>();
 
        // Get the size of the map
        int n = m.size();
 
        // a and b are first and second terms of
        // fibonacci series
        int a = 1, b = 1;
 
        int c;
        v.add(a);
        v.add(b);
 
        // vector v contains elements of
        // fibonacci series
        for (int i = 0; i < n - 2; i++)
        {
            v.add(a + b);
            c = a + b;
            a = b;
            b = c;
        }
 
        int flag = 1;
        int i = 0;
 
        // Compare vector elements with values in Map
        for (HashMap.Entry<Character,
                           Integer> entry : m.entrySet())
        {
            if (entry.getValue() != v.elementAt(i))
            {
                flag = 1;
                break;
            }
 
            i++;
        }
         
        if (flag == 1)
            return "YES";
        else
            return "NO";
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        String s = "abeeedd";
        System.out.println(isFibonacci(s));
    }
}
 
// This code is contributed by
// sanjeev2552

Python3

# Python3 program to check whether the frequency
# of characters in a string make Fibonacci Sequence
from collections import defaultdict
 
# Function to check if the frequencies
# are in Fibonacci series
def isFibonacci(s):
 
    # map to store the frequencies of character
    m = defaultdict(lambda:0)
 
    for i in range(0, len(s)):
        m[s[i]] += 1
 
    # Vector to store first n fibonacci numbers
    v = []
 
    # Get the size of the map
    n = len(m)
 
    # a and b are first and second
    # terms of fibonacci series
    a = b = 1
 
    v.append(a)
    v.append(b)
 
    # vector v contains elements of
    # fibonacci series
    for i in range(0, n - 2):
        v.append(a + b)
        c = a + b
        a, b = b, c
 
    flag, i = 1, 0
 
    # Compare vector elements with values in Map
    for itr in sorted(m):
        if m[itr] != v[i]:
            flag = 0
            break
         
        i += 1
     
    if flag == 1:
        return "YES"
    else:
        return "NO"
 
# Driver code
if __name__ == "__main__":
 
    s = "abeeedd"
    print(isFibonacci(s))
 
# This code is contributed by Rituraj Jain

C#

// C# program to check whether frequency of
// characters in a string makes
// Fibonacci Sequence
using System;
using System.Collections.Generic;            
     
class GFG
{
 
    // Function to check if the frequencies
    // are in Fibonacci series
    static String isFibonacci(String s)
    {
 
        // map to store the
        // frequencies of character
        int i = 0;
        Dictionary<int,
                   int> mp = new Dictionary<int,
                                            int>();
        for (i = 0; i < s.Length; i++)
        {
            if(mp.ContainsKey(s[i]))
            {
                var val = mp[s[i]];
                mp.Remove(s[i]);
                mp.Add(s[i], val + 1);
            }
            else
            {
                mp.Add(s[i], 1);
            }
        }
 
        // List to store first n
        // fibonacci numbers
        List<int> v = new List<int>();
 
        // Get the size of the map
        int n = mp.Count;
 
        // a and b are first and second terms of
        // fibonacci series
        int a = 1, b = 1;
 
        int c;
        v.Add(a);
        v.Add(b);
 
        // vector v contains elements of
        // fibonacci series
        for (i = 0; i < n - 2; i++)
        {
            v.Add(a + b);
            c = a + b;
            a = b;
            b = c;
        }
 
        int flag = 1;
         
        // Compare vector elements with values in Map
        foreach(KeyValuePair<int, int> entry in mp)
        {
            if (entry.Value != v[i])
            {
                flag = 1;
                break;
            }
            i++;
        }
         
        if (flag == 1)
            return "YES";
        else
            return "NO";
    }
 
    // Driver Code
    public static void Main(String[] args)
    {
        String s = "abeeedd";
        Console.WriteLine(isFibonacci(s));
    }
}
 
// This code is contributed by 29AjayKumar

Javascript

<script>
 
// Javascript program to check whether frequency of
// characters in a string makes
// Fibonacci Sequence
 
// Function to check if the frequencies
// are in Fibonacci series
function isFibonacci(s)
{
    // map to store the
    // frequencies of character
    var m = new Map();
 
    for (var i = 0; i < s.length; i++) {
 
        if(m.has(s[i]))
        {
            m.set(s[i], m.get(s[i]));
        }
        else
        {
            m.set(s[i], 1);
        }
    }
 
    // Vector to store first n
    // fibonacci numbers
    var v = [];
 
    // Get the size of the map
    var n = m.length;
 
    // a and b are first and second terms of
    // fibonacci series
    var a = 1, b = 1;
 
    var c;
    v.push(a);
    v.push(b);
 
    // vector v contains elements of fibonacci series
    for (var i = 0; i < n - 2; i++) {
        v.push(a + b);
        c = a + b;
        a = b;
        b = c;
    }
 
    var flag = 1;
    var i = 0;
 
    // Compare vector elements with values in Map
    m.forEach((value, key) => {
        if (value != v[i]) {
            flag = 0;
        }
    });
 
    if (flag == 1)
        return "YES";
    else
        return "NO";
}
 
// Driver code
var s = "abeeedd";
document.write( isFibonacci(s));
 
</script>
Producción: 

YES

 

Complejidad de tiempo: O(n), donde n es la longitud de la string dada.

Espacio Auxiliar: O(n)

Publicación traducida automáticamente

Artículo escrito por Shashank_Sharma y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *