Operaciones mínimas para hacer recuentos de residuos iguales en una array

Dada una array arr[] de N enteros y un entero M donde N % M = 0 . La tarea es encontrar el número mínimo de operaciones que deben realizarse en la array para hacer que c 0 = c 1 = ….. = c M – 1 = N / M donde c r es la cantidad de elementos en la array dada teniendo resto r cuando se divide por M . En cada operación, cualquier elemento de la array se puede incrementar en 1 .

Ejemplos: 

Entrada: arr[] = {1, 2, 3}, M = 3 
Salida:
Después de realizar la operación de módulo en la array dada, la array se convierte en {0, 1, 2} 
Y cuenta de c 0 = c 1 = c 2 = n / m = 1. 
Por lo tanto, no se requieren operaciones adicionales.

Entrada: arr[] = {3, 2, 0, 6, 10, 12}, M = 3 
Salida:
Después de realizar la operación de módulo en la array dada, la array se convierte en {0, 2, 0, 0, 1, 0} 
Y cuenta de c 0 = 4, c 1 = 1 y c 2 = 1. Para hacer c 0 = c 1 = c 2 = n / m = 2. 
Sume 1 a 6 y 2 a 12, entonces la array se convierte en { 3, 2, 0, 7, 10, 14} y c 0 = c 1 = c 2 = n / m = 2. 

Enfoque: para cada i de 0 a m – 1 , encuentre todos los elementos de la array que sean congruentes con i módulo m y almacene sus índices en una lista. Además, crea un vector llamado extra y deja k = n / m .

Tenemos que pasar de 0 a m – 1 dos veces. Para cada i de 0 a m – 1 , si hay más elementos que k en la lista, elimine los elementos adicionales de esta lista y agréguelos a extra. Si, en cambio, hay elementos menores que k , elimine los últimos elementos del vector extra. Por cada índice eliminado idx , aumente arr[idx] en (i – arr[idx]) % m .

Es obvio que después de las primeras m iteraciones, cada lista tendrá como máximo el tamaño k y después de m más iteraciones, todas las listas tendrán el mismo tamaño, es decir , k .

A continuación se muestra la implementación del enfoque anterior: 

C++

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the minimum
// number of operations required
int minOperations(int n, int a[], int m)
{
    int k = n / m;
 
    // To store modulos values
    vector<vector<int> > val(m);
    for (int i = 0; i < n; ++i) {
        val[a[i] % m].push_back(i);
    }
 
    long long ans = 0;
    vector<pair<int, int> > extra;
 
    for (int i = 0; i < 2 * m; ++i) {
        int cur = i % m;
 
        // If it's size greater than k
        // it needed to be decreased
        while (int(val[cur].size()) > k) {
            int elem = val[cur].back();
            val[cur].pop_back();
            extra.push_back(make_pair(elem, i));
        }
 
        // If it's size is less than k
        // it needed to be increased
        while (int(val[cur].size()) < k && !extra.empty()) {
            int elem = extra.back().first;
            int mmod = extra.back().second;
            extra.pop_back();
            val[cur].push_back(elem);
            ans += i - mmod;
        }
    }
 
    return ans;
}
 
// Driver code
int main()
{
    int m = 3;
 
    int a[] = { 3, 2, 0, 6, 10, 12 };
    int n = sizeof(a) / sizeof(a[0]);
    cout << minOperations(n, a, m);
 
    return 0;
}

Java

// Java implementation of the approach
import java.util.*;
 
class GFG{
 
static class pair
{
    int first, second;
     
    public pair(int first, int second) 
    {
        this.first = first;
        this.second = second;
    }   
}
 
// Function to return the minimum
// number of operations required
static int minOperations(int n, int a[], int m)
{
    int k = n / m;
 
    // To store modulos values
    @SuppressWarnings("unchecked")
    Vector<Integer> []val = new Vector[m];
    for(int i = 0; i < val.length; i++)
        val[i] = new Vector<Integer>();
         
    for(int i = 0; i < n; ++i)
    {
        val[a[i] % m].add(i);
    }
 
    long ans = 0;
    Vector<pair> extra = new Vector<>();
 
    for(int i = 0; i < 2 * m; ++i)
    {
        int cur = i % m;
 
        // If it's size greater than k
        // it needed to be decreased
        while ((val[cur].size()) > k)
        {
            int elem = val[cur].lastElement();
            val[cur].removeElementAt(val[cur].size() - 1);
            extra.add(new pair(elem, i));
        }
 
        // If it's size is less than k
        // it needed to be increased
        while (val[cur].size() < k && !extra.isEmpty())
        {
            int elem = extra.get(extra.size() - 1).first;
            int mmod = extra.get(extra.size() - 1).second;
             
            extra.remove(extra.size() - 1);
            val[cur].add(elem);
            ans += i - mmod;
        }
    }
    return (int)ans;
}
 
// Driver code
public static void main(String[] args)
{
    int m = 3;
    int a[] = { 3, 2, 0, 6, 10, 12 };
    int n = a.length;
     
    System.out.print(minOperations(n, a, m));
}
}
 
// This code is contributed by Princi Singh

Python3

# Python3 implementation of the approach
 
# Function to return the minimum
# number of operations required
def minOperations(n, a, m):
 
    k = n // m
 
    # To store modulos values
    val = [[] for i in range(m)]
    for i in range(0, n):
        val[a[i] % m].append(i)
     
    ans = 0
    extra = []
 
    for i in range(0, 2 * m):
        cur = i % m
 
        # If it's size greater than k
        # it needed to be decreased
        while len(val[cur]) > k:
            elem = val[cur].pop()
            extra.append((elem, i))
 
        # If it's size is less than k
        # it needed to be increased
        while (len(val[cur]) < k and
               len(extra) > 0):
            elem = extra[-1][0]
            mmod = extra[-1][1]
            extra.pop()
            val[cur].append(elem)
            ans += i - mmod
 
    return ans
 
# Driver code
if __name__ == "__main__":
 
    m = 3
 
    a = [3, 2, 0, 6, 10, 12]
    n = len(a)
    print(minOperations(n, a, m))
     
# This code is contributed by Rituraj Jain

C#

// C# implementation of the
// above approach
using System;
using System.Collections.Generic;
class GFG{
 
public class pair
{
  public int first,
             second;
 
  public pair(int first,
              int second) 
  {
    this.first = first;
    this.second = second;
  }   
}
 
// Function to return the minimum
// number of operations required
static int minOperations(int n,
                         int []a,
                         int m)
{
  int k = n / m;
 
  // To store modulos values
  List<int> []val =
       new List<int>[m];
   
  for(int i = 0;
          i < val.Length; i++)
    val[i] = new List<int>();
 
  for(int i = 0; i < n; ++i)
  {
    val[a[i] % m].Add(i);
  }
 
  long ans = 0;
  List<pair> extra =
       new List<pair>();
 
  for(int i = 0;
          i < 2 * m; ++i)
  {
    int cur = i % m;
 
    // If it's size greater than k
    // it needed to be decreased
    while ((val[cur].Count) > k)
    {
      int elem = val[cur][val[cur].Count - 1];
      val[cur].RemoveAt(val[cur].Count - 1);
      extra.Add(new pair(elem, i));
    }
 
    // If it's size is less than k
    // it needed to be increased
    while (val[cur].Count < k &&
           extra.Count != 0)
    {
      int elem = extra[extra.Count - 1].first;
      int mmod = extra[extra.Count - 1].second;
      extra.RemoveAt(extra.Count - 1);
      val[cur].Add(elem);
      ans += i - mmod;
    }
  }
  return (int)ans;
}
 
// Driver code
public static void Main(String[] args)
{
  int m = 3;
  int []a = {3, 2, 0, 6, 10, 12};
  int n = a.Length;
  Console.Write(minOperations(n, a, m));
}
}
 
// This code is contributed by Princi Singh
Producción: 

3






 

Publicación traducida automáticamente

Artículo escrito por pawan_asipu y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *