Dada una array arr[] de N elementos y un entero K donde K < N . La tarea es insertar K elementos enteros en la misma array de modo que se maximice la mediana de la array resultante. Imprime la mediana maximizada.
Ejemplos:
Entrada: arr[] = {3, 2, 3, 4, 2}, k = 2
Salida: 3
{2, 2, 3, 3, 4, 5, 5} puede ser una vez una array resultante con 3 como mediana .
Entrada: arr[] = {3, 2, 3, 4, 2}, k = 3
Salida: 3,5
Enfoque: para maximizar la mediana de la array resultante, todos los elementos que deben insertarse deben ser mayores que el elemento máximo de la array. Después de insertar estos elementos, el nuevo tamaño de la array será size = N + K . Ordene la array y la mediana de la array será arr[tamaño/2] si el tamaño es impar de lo contrario (arr[(tamaño/2) – 1] + arr[tamaño/2])/2 .
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Function to return the maximized median float getMaxMedian(int arr[], int n, int k) { int size = n + k; // Sort the array sort(arr, arr + n); // If size is even if (size % 2 == 0) { float median = (float)(arr[(size / 2) - 1] + arr[size / 2]) / 2; return median; } // If size is odd float median = arr[size / 2]; return median; } // Driver code int main() { int arr[] = { 3, 2, 3, 4, 2 }; int n = sizeof(arr) / sizeof(arr[0]); int k = 2; cout << getMaxMedian(arr, n, k); return 0; }
Java
import java.util.*; // Java implementation of the approach class GFG { // Function to return the maximized median static double getMaxMedian(int[] arr, int n, int k) { int size = n + k; // Sort the array Arrays.sort(arr); // If size is even if (size % 2 == 0) { double median = (double) (arr[(size / 2) - 1] + arr[size / 2]) / 2; return median; } // If size is odd double median1 = arr[size / 2]; return median1; } // Driver code public static void main(String[] args) { int[] arr = {3, 2, 3, 4, 2}; int n = arr.length; int k = 2; System.out.print((int)getMaxMedian(arr, n, k)); } } /* This code contributed by PrinciRaj1992 */
Python3
# Python 3 implementation of the approach # Function to return the maximized median def getMaxMedian(arr, n, k): size = n + k # Sort the array arr.sort(reverse = False) # If size is even if (size % 2 == 0): median = (arr[int(size / 2) - 1] + arr[int(size / 2)]) / 2 return median # If size is odd median = arr[int(size / 2)] return median # Driver code if __name__ == '__main__': arr = [3, 2, 3, 4, 2] n = len(arr) k = 2 print(getMaxMedian(arr, n, k)) # This code is contributed by # Surendra_Gangwar
C#
// C# implementation of the approach using System; using System.Linq; class GFG { // Function to return the maximized median static double getMaxMedian(int []arr, int n, int k) { int size = n + k; // Sort the array Array.Sort(arr); // If size is even if (size % 2 == 0) { double median = (double)(arr[(size / 2) - 1] + arr[size / 2]) / 2; return median; } // If size is odd double median1 = arr[size / 2]; return median1; } // Driver code static void Main() { int []arr = { 3, 2, 3, 4, 2 }; int n = arr.Length; int k = 2; Console.WriteLine(getMaxMedian(arr, n, k)); } } // This code is contributed by mits
PHP
<?php // PHP implementation of the approach // Function to return the maximized median function getMaxMedian($arr, $n, $k) { $size = $n + $k; // Sort the array sort($arr, $n); // If size is even if ($size % 2 == 0) { $median = (float)($arr[($size / 2) - 1] + $arr[$size / 2]) / 2; return $median; } // If size is odd $median = $arr[$size / 2]; return $median; } // Driver code $arr = array( 3, 2, 3, 4, 2 ); $n = sizeof($arr); $k = 2; echo(getMaxMedian($arr, $n, $k)); // This code is Contributed by Code_Mech.
Javascript
<script> // JavaScript implementation of the approach // Function to return the maximized median function getMaxMedian(arr, n, k) { let size = n + k; // Sort the array arr.sort((a, b) => a - b); // If size is even if (size % 2 == 0) { let median = (arr[Math.floor(size / 2) - 1] + arr[Math.floor(size / 2)]) / 2; return median; } // If size is odd let median = arr[Math.floor(size / 2)]; return median; } // Driver code let arr = [3, 2, 3, 4, 2]; let n = arr.length; let k = 2; document.write(getMaxMedian(arr, n, k)); // This code is contributed by _saurabh_jaiswal </script>
3
Complejidad de tiempo: O(N * logN)
Espacio auxiliar: O(1)
Publicación traducida automáticamente
Artículo escrito por ayushgoyal y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA