Dada una array grid[][] de tamaño N x N , la tarea es encontrar el costo mínimo requerido para alcanzar la esquina inferior derecha de la array desde la esquina superior izquierda, donde el costo de moverse a una nueva celda es [S /2] + K , donde S es la puntuación en el índice anterior y K es el elemento de array en el índice actual.
Nota: Aquí, [X] es el entero más grande que no excede X .
Ejemplos:
Entrada: grid[][] = {{ 0, 3, 9, 6}, {1, 4, 4, 5}, {8, 2, 5, 4}, {1, 8, 5, 9}}
Salida : 12
Explicación: Uno de los posibles conjuntos de movimientos es el siguiente 0 -> 1 -> 4 -> 4 -> 7 -> 7 -> 12.Entrada: g rid[][] = {{0, 82, 2, 6, 7}, {4, 3, 1, 5, 21}, {6, 4, 20, 2, 8}, {6, 6 , 64, 1, 8}, {1, 65, 1, 6, 4}}
Salida: 7
Enfoque: siga los pasos a continuación para resolver el problema:
- Haga que el primer elemento de la array sea cero .
- Traverse en el rango [0, N-1] :
- Inicialice una lista, diga moveList y agregue los movimientos i y j .
- Inicialice otra lista, diga posibles formas y añada moveList en ella.
- Inicialice una lista, por ejemplo, possibleWaysSum, inicialmente como una lista vacía.
- Recorra la lista de vías posibles :
- Atraviesa la moveList adjunta :
- Compruebe si el movimiento es igual a i, luego actualice i = i + 1.
- De lo contrario, actualice j = j + 1 .
- Inicialice una variable, diga tempSum. Establezca tempSum = tempSum + grid[i][j] .
- Agregue tempSum en la lista de vías posibles después del ciclo.
- Atraviesa la moveList adjunta :
- Imprima el costo mínimo de possibleWaysSum como salida.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; vector<vector<char> > possibleWays; // Returns true if str[curr] does not matches with any // of the characters after str[start] bool shouldSwap(char str[], int start, int curr) { for (int i = start; i < curr; i++) { if (str[i] == str[curr]) { return false; } } return true; } // Function for the swap void swap(char str[], int i, int j) { char c = str[i]; str[i] = str[j]; str[j] = c; } // Prints all distinct permutations in str[0..n-1] void findPermutations(char str[], int index, int n) { if (index >= n) { vector<char> l; for (int i = 0; i < n; i++) l.push_back(str[i]); possibleWays.push_back(l); return; } for (int i = index; i < n; i++) { // Proceed further for str[i] only if it // doesn't match with any of the characters // after str[index] bool check = shouldSwap(str, index, i); if (check) { swap(str, index, i); findPermutations(str, index + 1, n); swap(str, index, i); } } } // Function to print the minimum cost void minCost(int grid[][5], int N) { vector<char> moveList; // Making top-left value 0 // implicitly to generate list of moves grid[0][0] = 0; vector<int> possibleWaysSum; for (int k = 0; k < N - 1; k++) { moveList.push_back('i'); moveList.push_back('j'); possibleWays.clear(); // Convert into set to make only unique values int n = moveList.size(); char str[n]; for (int i = 0; i < n; i++) str[i] = moveList[i]; // To store the unique permutation of moveList // into the possibleWays findPermutations(str, 0, n); possibleWaysSum.clear(); // Traverse the list for (vector<char> way : possibleWays) { int i = 0, j = 0, tempSum = 0; for (char move : way) { if (move == 'i') { i += 1; } else { j += 1; } // Stores cost according to given // conditions tempSum = (int)(floor(tempSum / 2)) + grid[i][j]; } possibleWaysSum.push_back(tempSum); } } // Print the minimum possible cost int ans = possibleWaysSum[0]; for (int i = 1; i < possibleWaysSum.size(); i++) ans = min(ans, possibleWaysSum[i]); cout << ans; } // Driven Program int main() { // Size of the grid int N = 4; // Given grid[][] int grid[][5] = { { 0, 3, 9, 6 }, { 1, 4, 4, 5 }, { 8, 2, 5, 4 }, { 1, 8, 5, 9 } }; // Function call to print the minimum // cost to reach bottom-right corner // from the top-left corner of the matrix minCost(grid, N); return 0; } // This code is contributed by Kingash.
Java
// Java program for the above approach import java.io.*; import java.lang.*; import java.util.*; class GFG { static ArrayList<ArrayList<Character> > possibleWays; // Returns true if str[curr] does not matches with any // of the characters after str[start] static boolean shouldSwap(char str[], int start, int curr) { for (int i = start; i < curr; i++) { if (str[i] == str[curr]) { return false; } } return true; } // Prints all distinct permutations in str[0..n-1] static void findPermutations(char str[], int index, int n) { if (index >= n) { ArrayList<Character> l = new ArrayList<>(); for (char ch : str) l.add(ch); possibleWays.add(l); return; } for (int i = index; i < n; i++) { // Proceed further for str[i] only if it // doesn't match with any of the characters // after str[index] boolean check = shouldSwap(str, index, i); if (check) { swap(str, index, i); findPermutations(str, index + 1, n); swap(str, index, i); } } } // Function for the swap static void swap(char[] str, int i, int j) { char c = str[i]; str[i] = str[j]; str[j] = c; } // Function to print the minimum cost static void minCost(int grid[][], int N) { ArrayList<Character> moveList = new ArrayList<>(); // Making top-left value 0 // implicitly to generate list of moves grid[0][0] = 0; ArrayList<Integer> possibleWaysSum = new ArrayList<>(); for (int k = 0; k < N - 1; k++) { moveList.add('i'); moveList.add('j'); possibleWays = new ArrayList<>(); // Convert into set to make only unique values int n = moveList.size(); char str[] = new char[n]; for (int i = 0; i < n; i++) str[i] = moveList.get(i); // To store the unique permutation of moveList // into the possibleWays findPermutations(str, 0, n); possibleWaysSum = new ArrayList<>(); // Traverse the list for (ArrayList<Character> way : possibleWays) { int i = 0, j = 0, tempSum = 0; for (char move : way) { if (move == 'i') { i += 1; } else { j += 1; } // Stores cost according to given // conditions tempSum = (int)(Math.floor(tempSum / 2)) + grid[i][j]; } possibleWaysSum.add(tempSum); } } // Print the minimum possible cost int ans = possibleWaysSum.get(0); for (int i = 1; i < possibleWaysSum.size(); i++) ans = Math.min(ans, possibleWaysSum.get(i)); System.out.println(ans); } // Driver code public static void main(String[] args) { // Size of the grid int N = 4; // Given grid[][] int grid[][] = { { 0, 3, 9, 6 }, { 1, 4, 4, 5 }, { 8, 2, 5, 4 }, { 1, 8, 5, 9 } }; // Function call to print the minimum // cost to reach bottom-right corner // from the top-left corner of the matrix minCost(grid, N); } } // This code is contributed by Kingash.
Python3
# Python3 program for the above approach from itertools import permutations from math import floor # Function to print the minimum cost def minCost(grid, N): moveList = [] # Making top-left value 0 # implicitly to generate list of moves grid[0][0] = 0 for i in range(N - 1): moveList.append('i') moveList.append('j') # Convert into set to make only unique values possibleWays = list(set(permutations(moveList))) possibleWaysSum = [] # Traverse the list for way in possibleWays: i, j, tempSum = 0, 0, 0 for move in way: if move == 'i': i += 1 else: j += 1 # Stores cost according to given conditions tempSum = floor(tempSum/2) + grid[i][j] possibleWaysSum.append(tempSum) minWayIndex = possibleWaysSum.index(min(possibleWaysSum)) # Print the minimum possible cost print(min(possibleWaysSum)) # Size of the grid N = 4 # Given grid[][] grid = [[0, 3, 9, 6], [1, 4, 4, 5], [8, 2, 5, 4], [1, 8, 5, 9]] # Function call to print the minimum # cost to reach bottom-right corner # from the top-left corner of the matrix minCost(grid, N)
Javascript
<script> // Javascript program for the above approach let possibleWays = []; // Returns true if str[curr] does not matches with any // of the characters after str[start] function shouldSwap(str, start, curr) { for (let i = start; i < curr; i++) { if (str[i] == str[curr]) { return false; } } return true; } // Prints all distinct permutations in str[0..n-1] function findPermutations(str, index, n) { if (index >= n) { let l = new Array(); for (let ch of str) l.push(ch); possibleWays.push(l); return; } for (let i = index; i < n; i++) { // Proceed further for str[i] only if it // doesn't match with any of the characters // after str[index] let check = shouldSwap(str, index, i); if (check) { swap(str, index, i); findPermutations(str, index + 1, n); swap(str, index, i); } } } // Function for the swap function swap(str, i, j) { let c = str[i]; str[i] = str[j]; str[j] = c; } // Function to print the minimum cost function minCost(grid, N) { let moveList = new Array(); // Making top-left value 0 // implicitly to generate list of moves grid[0][0] = 0; let possibleWaysSum = new Array(); for (let k = 0; k < N - 1; k++) { moveList.push('i'); moveList.push('j'); possibleWays = new Array(); // Convert into set to make only unique values let n = moveList.length; let str = []; for (let i = 0; i < n; i++) str[i] = moveList[i]; // To store the unique permutation of moveList // into the possibleWays findPermutations(str, 0, n); possibleWaysSum = new Array(); // Traverse the list for (let way of possibleWays) { let i = 0, j = 0, tempSum = 0; for (let move of way) { if (move == 'i') { i += 1; } else { j += 1; } // Stores cost according to given // conditions tempSum = (Math.floor(tempSum / 2)) + grid[i][j]; } possibleWaysSum.push(tempSum); } } // Print the minimum possible cost let ans = possibleWaysSum[0]; for (let i = 1; i < possibleWaysSum.length; i++) ans = Math.min(ans, possibleWaysSum[i]); document.write(ans); } // Driver code // Size of the grid let N = 4; // Given grid[][] let grid = [[0, 3, 9, 6], [1, 4, 4, 5], [8, 2, 5, 4], [1, 8, 5, 9]]; // Function call to print the minimum // cost to reach bottom-right corner // from the top-left corner of the matrix minCost(grid, N); // This code is contributed by Saurabh Jaiswal </script>
12
Tiempo Complejidad: O(N 2 )
Espacio Auxiliar: O(N)
Publicación traducida automáticamente
Artículo escrito por kashishmishra9911 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA