Dado un número N, la tarea es encontrar el siguiente cubo perfecto mayor que N.
Ejemplos:
Input: N = 6 Output: 8 8 is a greater number than 6 and is also a perfect cube Input: N = 9 Output: 27
Acercarse:
- Encuentre la raíz cúbica de N dada.
- Calcule su valor mínimo utilizando la función de suelo en C++ .
- Luego súmale 1.
- Imprime el cubo de ese número.
C++
// C++ implementation of above approach #include <cmath> #include <iostream> using namespace std; // Function to find the next perfect cube int nextPerfectCube(int N) { int nextN = floor(cbrt(N)) + 1; return nextN * nextN * nextN; } // Driver Code int main() { int n = 35; cout << nextPerfectCube(n); return 0; }
Java
//Java implementation of above approach import java.util.*; import java.lang.*; import java.io.*; class GFG{ // Function to find the next perfect cube static int nextPerfectCube(int N) { int nextN = (int)Math.floor(Math.cbrt(N)) + 1; return nextN * nextN * nextN; } // Driver Code public static void main(String args[]) { int n = 35; System.out.print(nextPerfectCube(n)); } }
Python 3
# Python 3 implementation of above approach # from math import everything from math import * # Function to find the next perfect cube def nextPerfectCube(N) : nextN = floor(N ** (1/3)) + 1 return nextN ** 3 # Driver code if __name__ == "__main__" : n = 35 print(nextPerfectCube(n)) # This code is contributed by ANKITRAI1
C#
// C# implementation of above approach using System; class GFG { // Function to find the next perfect cube static int nextPerfectCube(int N) { int nextN = (int)Math.Floor(Math.Pow(N, (double)1/3)) + 1; return nextN * nextN * nextN; } // Driver Code public static void Main() { int n = 35; Console.Write(nextPerfectCube(n)); } } // This code is contributed by ChitraNayal
PHP
<?php // PHP implementation of above approach // from math import everything // Function to find the next perfect cube function nextPerfectCube($N) { $nextN = (int)(floor(pow($N,(1/3))) + 1); return $nextN * $nextN * $nextN ; } // Driver code $n = 35; print(nextPerfectCube($n)); // This code is contributed by mits ?>
Javascript
<script> // Javascript implementation of above approach // Function to find the next perfect cube function nextPerfectCube(N) { let nextN = Math.floor(Math.cbrt(N)) + 1; return nextN * nextN * nextN; } // Driver Code let n = 35; document.write(nextPerfectCube(n)); </script>
Producción:
64
Complejidad de tiempo: O(1)
Espacio Auxiliar: O(1)
Publicación traducida automáticamente
Artículo escrito por Shivam.Pradhan y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA