Dado un número no negativo num . El problema es aplicar como máximo una operación de intercambio sobre el número num para que la resultante sea el número más grande posible. El número podría ser muy grande, por lo que se puede usar un tipo de string para almacenar el número.
Ejemplos:
Input : n = 8725634 Output : 8765234 Swapped the digits 2 and 6. Input : n = 54321 Output : 54321 No swapping of digits required.
Cree una array rightMax[] . rightMax[i] contiene el índice del dígito mayor que está en el lado derecho de num[i] y también mayor que num[i] . Si no existe tal dígito, entonces rightMax[i] = -1. Ahora, recorra la array rightMax[] de i = 0 a n-1 (donde n es el número total de dígitos en num ), y busque el primer elemento que tenga rightMax[i] != -1. Realice la operación swap(num[i], num[rightMax[i]]) y rompa.
C++
// C++ implementation to form the largest number // by applying atmost one swap operation #include <bits/stdc++.h> using namespace std; // function to form the largest number by // applying atmost one swap operation string largestNumber(string num) { int n = num.size(); int rightMax[n], right; // for the rightmost digit, there // will be no greater right digit rightMax[n - 1] = -1; // index of the greatest right digit till the // current index from the right direction right = n - 1; // traverse the array from second right element // up to the left element for (int i = n - 2; i >= 0; i--) { // if 'num[i]' is less than the greatest digit // encountered so far if (num[i] < num[right]) rightMax[i] = right; // else else { // there is no greater right digit // for 'num[i]' rightMax[i] = -1; // update 'right' index right = i; } } // traverse the 'rightMax[]' array from left to right for (int i = 0; i < n; i++) { // if for the current digit, greater right digit exists // then swap it with its greater right digit and break if (rightMax[i] != -1) { // performing the required swap operation swap(num[i], num[rightMax[i]]); break; } } // required largest number return num; } // Driver program to test above int main() { string num = "8725634"; cout << "Largest number:" << largestNumber(num); return 0; }
Java
//Java implementation to form the largest number //by applying atmost one swap operation public class GFG { // function to form the largest number by // applying atmost one swap operation static String largestNumber(String num) { int n = num.length(); int right; int rightMax[] = new int[n]; // for the rightmost digit, there // will be no greater right digit rightMax[n - 1] = -1; // index of the greatest right digit // till the current index from the // right direction right = n - 1; // traverse the array from second right // element up to the left element for (int i = n - 1; i >= 0 ; i--) { // if 'num.charAt(i)' is less than the // greatest digit encountered so far if (num.charAt(i) < num.charAt(right)) rightMax[i] = right; else { // there is no greater right digit // for 'num.charAt(i)' rightMax[i] = -1; // update 'right' index right = i; } } // traverse the 'rightMax[]' array from // left to right for (int i = 0; i < n; i++) { // if for the current digit, greater // right digit exists then swap it // with its greater right digit and break if (rightMax[i] != -1) { // performing the required swap operation num = swap(num,i,rightMax[i]); break; } } // required largest number return num; } // Utility method to swap two characters // in a String static String swap(String num, int i, int j) { StringBuilder sb= new StringBuilder(num); sb.setCharAt(i, num.charAt(j)); sb.setCharAt(j, num.charAt(i)); return sb.toString(); } //Driver Function to test above Function public static void main(String[] args) { String num = "8725634"; System.out.println("Largest Number : " + largestNumber(num)); } } //This code is contributed by Sumit Ghosh
Python3
# Python implementation to form the largest number # by applying atmost one swap operation # function to form the largest number by # applying atmost one swap operation def largestNumber(num): n = len(num) rightMax = [0 for i in range(n)] # for the rightmost digit, there # will be no greater right digit rightMax[n - 1] = -1 # index of the greatest right digit till the # current index from the right direction right = n - 1 # traverse the array from second right element # up to the left element i = n - 2 while i >= 0: # if 'num[i]' is less than the greatest digit # encountered so far if (num[i] < num[right]): rightMax[i] = right # else else: # there is no greater right digit # for 'num[i]' rightMax[i] = -1 # update 'right' index right = i i -= 1 # traverse the 'rightMax[]' array from left to right for i in range(n): # if for the current digit, greater right digit exists # then swap it with its greater right digit and break if (rightMax[i] != -1): # performing the required swap operation t = num[i] num[i] = num[rightMax[i]] num[rightMax[i]] = t break # required largest number return num # Driver program to test above num = "8725634" li = [i for i in num] print("Largest number: ") li = largestNumber(li) for i in li: print(i,end=" ") print() #This code is contributed by Sachin Bisht
C#
// C# implementation to form the largest number // by applying atmost one swap operation using System; using System.Text; public class GFG { // function to form the largest number by // applying atmost one swap operation static String largestNumber(String num) { int n = num.Length; int right; int[] rightMax = new int[n]; // for the rightmost digit, there // will be no greater right digit rightMax[n - 1] = -1; // index of the greatest right digit // till the current index from the // right direction right = n - 1; // traverse the array from second right // element up to the left element for (int i = n - 1; i >= 0 ; i--) { // if 'num.charAt(i)' is less than the // greatest digit encountered so far if (num[i] < num[right]) rightMax[i] = right; else { // there is no greater right digit // for 'num.charAt(i)' rightMax[i] = -1; // update 'right' index right = i; } } // traverse the 'rightMax[]' array from // left to right for (int i = 0; i < n; i++) { // if for the current digit, greater // right digit exists then swap it // with its greater right digit and break if (rightMax[i] != -1) { // performing the required swap operation num = swap(num,i,rightMax[i]); break; } } // required largest number return num; } // Utility method to swap two characters // in a String static String swap(String num, int i, int j) { StringBuilder sb= new StringBuilder(num); sb[i]=num[j]; sb[j]=num[i]; return sb.ToString(); } //Driver Function to test above Function public static void Main() { String num = "8725634"; Console.WriteLine("Largest Number : " +largestNumber(num)); } } //This code is contributed by mits
PHP
<?php // PHP implementation to form the // largest number by applying atmost // one swap operation // function to form the largest number by // applying atmost one swap operation function largestNumber($num) { $n = strlen($num); $rightMax[$n] = array(0); $right; // for the rightmost digit, there // will be no greater right digit $rightMax[$n - 1] = -1; // index of the greatest right // digit till the current index // from the right direction $right = $n - 1; // traverse the array from second // right element up to the left element for ($i = $n - 2; $i >= 0; $i--) { // if 'num[i]' is less than the // greatest digit encountered so far if ($num[$i] < $num[$right]) $rightMax[$i] = $right; // else else { // there is no greater right // digit for 'num[i]' $rightMax[$i] = -1; // update 'right' index $right = $i; } } // traverse the 'rightMax[]' // array from left to right for ($i = 0; $i < $n; $i++) { // if for the current digit, greater // right digit exists then swap it // with its greater right digit and break if ($rightMax[$i] != -1) { // performing the required swap operation list($num[$i], $num[$rightMax[$i]]) = array($num[$rightMax[$i]], $num[$i]); break; } } // required largest number return $num; } // Driver Code $num = "8725634"; echo "Largest number: ", largestNumber($num); // This code is contributed by jit_t ?>
Javascript
<script> // Javascript implementation to form the largest number // by applying atmost one swap operation // function to form the largest number by // applying atmost one swap operation function largestNumber(num) { var n = num.length; var rightMax = Array(n), right; // for the rightmost digit, there // will be no greater right digit rightMax[n - 1] = -1; // index of the greatest right digit till the // current index from the right direction right = n - 1; // traverse the array from second right element // up to the left element for (var i = n - 2; i >= 0; i--) { // if 'num[i]' is less than the greatest digit // encountered so far if (num[i] < num[right]) rightMax[i] = right; // else else { // there is no greater right digit // for 'num[i]' rightMax[i] = -1; // update 'right' index right = i; } } // traverse the 'rightMax[]' array from left to right for (var i = 0; i < n; i++) { // if for the current digit, greater right digit exists // then swap it with its greater right digit and break if (rightMax[i] != -1) { // performing the required swap operation var tmp = num[i]; num[i] = num[rightMax[i]]; num[rightMax[i]] = tmp break; } } // required largest number return num.join(''); } // Driver program to test above var num = "8725634".split(''); document.write( "Largest number:" + largestNumber(num)); // This code is contributed by rrrtnx. </script>
Producción:
Largest number: 8765234
Complejidad temporal: O(n), donde n es el número total de dígitos.
Espacio Auxiliar: O(n), donde n es el número total de dígitos.
Este artículo es una contribución de Ayush Jauhari . Si te gusta GeeksforGeeks y te gustaría contribuir, también puedes escribir un artículo usando write.geeksforgeeks.org o enviar tu artículo por correo a review-team@geeksforgeeks.org. Vea su artículo que aparece en la página principal de GeeksforGeeks y ayude a otros Geeks.
Escriba comentarios si encuentra algo incorrecto o si desea compartir más información sobre el tema tratado anteriormente.
Publicación traducida automáticamente
Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA