Cuente las formas de dividir la array en dos subconjuntos que tengan una diferencia entre su suma igual a K

Dada una array A[] de tamaño N y un entero diff , la tarea es contar el número de formas de dividir la array en dos subconjuntos ( es posible un subconjunto no vacío ) de modo que la diferencia entre sus sumas sea igual a diff .

Ejemplos:

Entrada: A[] = {1, 1, 2, 3}, diff = 1  
Salida: 3  
Explicación: Todas las combinaciones posibles son las siguientes: 

  • {1, 1, 2} y {3}
  • {1, 3} y {1, 2}
  • {1, 2} y {1, 3}

Todas las particiones tienen diferencia entre sus sumas igual a 1. Por lo tanto, la cuenta de vías es 3.

Entrada: A[] = {1, 6, 11, 5}, diff=1
Salida: 2

 

Enfoque ingenuo: el enfoque más simple para resolver el problema se basa en las siguientes observaciones:

Sea la suma de los elementos en los subconjuntos de partición S1 y S2 sum1 y sum2 respectivamente . Sea la suma de la array A[ ] X . Dado, sum1 – sum2 = diff – (1) Además, sum1 + sum2 = X – (2)


De las ecuaciones (1) y (2), 
sum1 = (X + diff)/2

Por lo tanto, la tarea se reduce a encontrar el número de subconjuntos con una suma dada
Por lo tanto, el enfoque más simple para resolver este problema es generar todos los subconjuntos posibles y verificar si el subconjunto tiene la suma requerida. 

Complejidad temporal: O(2 N )
Espacio auxiliar: O(N)

Enfoque Eficiente: Para optimizar el enfoque anterior, la idea es utilizar Programación Dinámica . Inicialice una tabla dp[][] de tamaño N*X , donde dp[i][C] almacena el número de subconjuntos del subarreglo A[i…N-1] tal que su suma sea igual a C . Por lo tanto, la recurrencia es muy trivial ya que solo hay dos opciones, es decir, considerar el i- ésimo elemento en el subconjunto o no. Entonces la relación de recurrencia será:

dp[i][C] = dp[i – 1][C – A[i]] + dp[i-1][C]

A continuación se muestra la implementación del enfoque anterior:

C++

// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to count the number of ways to divide
// the array into two subsets and such that the
// difference between their sums is equal to diff
int countSubset(int arr[], int n, int diff)
{
    // Store the sum of the set S1
    int sum = 0;
    for (int i = 0; i < n; i++)
        sum += arr[i];
    sum += diff;
    sum = sum / 2;
 
    // Initializing the matrix
    int t[n + 1][sum + 1];
 
    // Number of ways to get sum
    // using 0 elements is 0
    for (int j = 0; j <= sum; j++)
        t[0][j] = 0;
 
    // Number of ways to get sum 0
    // using i elements is 1
    for (int i = 0; i <= n; i++)
        t[i][0] = 1;
 
    // Traverse the 2D array
    for (int i = 1; i <= n; i++) {
        for (int j = 1; j <= sum; j++) {
 
            // If the value is greater
            // than the sum store the
            // value of previous state
            if (arr[i - 1] > j)
                t[i][j] = t[i - 1][j];
 
            else {
                t[i][j] = t[i - 1][j]
                          + t[i - 1][j - arr[i - 1]];
            }
        }
    }
 
    // Return the result
    return t[n][sum];
}
 
// Driver Code
int main()
{
    // Given Input
    int diff = 1, n = 4;
    int arr[] = { 1, 1, 2, 3 };
 
    // Function Call
    cout << countSubset(arr, n, diff);
}

Java

// Java program for the above approach
import java.io.*;
public class GFG
{
 
    // Function to count the number of ways to divide
    // the array into two subsets and such that the
    // difference between their sums is equal to diff
    static int countSubset(int []arr, int n, int diff)
    {
       
        // Store the sum of the set S1
        int sum = 0;
        for (int i = 0; i < n; i++)
            sum += arr[i];
        sum += diff;
        sum = sum / 2;
     
        // Initializing the matrix
        int t[][] = new int[n + 1][sum + 1];
     
        // Number of ways to get sum
        // using 0 elements is 0
        for (int j = 0; j <= sum; j++)
            t[0][j] = 0;
     
        // Number of ways to get sum 0
        // using i elements is 1
        for (int i = 0; i <= n; i++)
            t[i][0] = 1;
     
        // Traverse the 2D array
        for (int i = 1; i <= n; i++) {
            for (int j = 1; j <= sum; j++) {
     
                // If the value is greater
                // than the sum store the
                // value of previous state
                if (arr[i - 1] > j)
                    t[i][j] = t[i - 1][j];
     
                else {
                    t[i][j] = t[i - 1][j]
                              + t[i - 1][j - arr[i - 1]];
                }
            }
        }
     
        // Return the result
        return t[n][sum];
    }
     
    // Driver Code
    public static void main(String[] args)
    {
         
        // Given Input
        int diff = 1, n = 4;
        int arr[] = { 1, 1, 2, 3 };
     
        // Function Call
        System.out.print(countSubset(arr, n, diff));
    }
}
 
// This code is contributed by AnkThon

Python3

# Python3 program for the above approach
 
# Function to count the number of ways to divide
# the array into two subsets and such that the
# difference between their sums is equal to diff
def countSubset(arr, n, diff):
     
    # Store the sum of the set S1
    sum = 0
    for i in range(n):
        sum += arr[i]
         
    sum += diff
    sum = sum // 2
 
    # Initializing the matrix
    t = [[0 for i in range(sum + 1)]
            for i in range(n + 1)]
 
    # Number of ways to get sum
    # using 0 elements is 0
    for j in range(sum + 1):
        t[0][j] = 0
 
    # Number of ways to get sum 0
    # using i elements is 1
    for i in range(n + 1):
        t[i][0] = 1
 
    # Traverse the 2D array
    for i in range(1, n + 1):
        for j in range(1, sum + 1):
             
            # If the value is greater
            # than the sum store the
            # value of previous state
            if (arr[i - 1] > j):
                t[i][j] = t[i - 1][j]
            else:
                t[i][j] = t[i - 1][j] + t[i - 1][j - arr[i - 1]]
 
    # Return the result
    return t[n][sum]
 
# Driver Code
if __name__ == '__main__':
     
    # Given Input
    diff, n = 1, 4
    arr = [ 1, 1, 2, 3 ]
 
    # Function Call
    print (countSubset(arr, n, diff))
 
# This code is contributed by mohit kumar 29

C#

// C# program for the above approach
 
using System;
 
public class GFG
{
 
    // Function to count the number of ways to divide
    // the array into two subsets and such that the
    // difference between their sums is equal to diff
    static int countSubset(int []arr, int n, int diff)
    {
       
        // Store the sum of the set S1
        int sum = 0;
        for (int i = 0; i < n; i++)
            sum += arr[i];
        sum += diff;
        sum = sum / 2;
     
        // Initializing the matrix
        int [,]t = new int[n + 1, sum + 1];
     
        // Number of ways to get sum
        // using 0 elements is 0
        for (int j = 0; j <= sum; j++)
            t[0,j] = 0;
     
        // Number of ways to get sum 0
        // using i elements is 1
        for (int i = 0; i <= n; i++)
            t[i,0] = 1;
     
        // Traverse the 2D array
        for (int i = 1; i <= n; i++) {
            for (int j = 1; j <= sum; j++) {
     
                // If the value is greater
                // than the sum store the
                // value of previous state
                if (arr[i - 1] > j)
                    t[i,j] = t[i - 1,j];
     
                else {
                    t[i,j] = t[i - 1,j]
                              + t[i - 1,j - arr[i - 1]];
                }
            }
        }
     
        // Return the result
        return t[n,sum];
    }
     
    // Driver Code
    public static void Main(string[] args)
    {
         
        // Given Input
        int diff = 1, n = 4;
        int []arr = { 1, 1, 2, 3 };
     
        // Function Call
        Console.Write(countSubset(arr, n, diff));
    }
}
 
// This code is contributed by AnkThon

Javascript

<script>
 
// JavaScript program for the above approach
 
// Function to count the number of ways to divide
// the array into two subsets and such that the
// difference between their sums is equal to diff
function countSubset(arr, n, diff)
{
    // Store the sum of the set S1
    var sum = 0;
    for (var i = 0; i < n; i++){
        sum += arr[i];
    }
    sum += diff;
    sum = sum / 2;
 
    // Initializing the matrix
    //int t[n + 1][sum + 1];
    var t = new Array(n + 1);
     
    // Loop to create 2D array using 1D array
    for (var i = 0; i < t.length; i++) {
        t[i] = new Array(sum + 1);
    }
     
    // Loop to initialize 2D array elements.
    for (var i = 0; i < t.length; i++) {
        for (var j = 0; j < t[i].length; j++) {
            t[i][j] = 0;
        }
    }
 
    // Number of ways to get sum
    // using 0 elements is 0
    for (var j = 0; j <= sum; j++)
        t[0][j] = 0;
 
    // Number of ways to get sum 0
    // using i elements is 1
    for (var i = 0; i <= n; i++)
        t[i][0] = 1;
 
    // Traverse the 2D array
    for (var i = 1; i <= n; i++) {
        for (var j = 1; j <= sum; j++) {
 
            // If the value is greater
            // than the sum store the
            // value of previous state
            if (arr[i - 1] > j)
                t[i][j] = t[i - 1][j];
 
            else {
                t[i][j] = t[i - 1][j]
                          + t[i - 1][j - arr[i - 1]];
            }
        }
    }
 
    // Return the result
    return t[n][sum];
}
 
// Driver Code
 
// Given Input
var diff = 1;
var n = 4;
var arr = [ 1, 1, 2, 3 ];
 
// Function Call
document.write(countSubset(arr, n, diff));
 
</script>
Producción: 

3

 

Complejidad de tiempo: O(S*N), donde S = suma de los elementos del arreglo + K/2 
Espacio auxiliar: O(S*N)

Publicación traducida automáticamente

Artículo escrito por sonigurleen60 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *