Dados tres números enteros N , A y B , la tarea es encontrar si N puede representarse como la suma de A y B.
Ejemplos:
Entrada: N = 11, A = 2, B = 3
Salida: Sí
2 + 2 + 2 + 2 + 3 = 11Entrada: N = 8, A = 3, B = 7
Salida: No
Enfoque: una solución eficiente es llamar a una función recursiva que comience con cero (porque el cero siempre es posible). Si la llamada a la función es fun(x) , entonces llama recursivamente a fun(x + a) y fun(x + b) (porque si x es posible, entonces x + a y x + b también son posibles). Vuelve fuera de la función si x > n .
A continuación se muestra la implementación del enfoque anterior:
C++
// CPP program to find if number N can // be represented as sum of a's and b's #include <bits/stdc++.h> using namespace std; // Function to find if number N can // be represented as sum of a's and b's void checkIfPossibleRec(int x, int a, int b, bool isPossible[], int n) { // base condition if (x > n) return; // if x is already visited if (isPossible[x]) return; // set x as possible isPossible[x] = true; // recursive call checkIfPossibleRec(x + a, a, b, isPossible, n); checkIfPossibleRec(x + b, a, b, isPossible, n); } bool checkPossible(int n, int a, int b) { bool isPossible[n + 1] = { false }; checkIfPossibleRec(0, a, b, isPossible, n); return isPossible[n]; } // Driver program int main() { int a = 3, b = 7, n = 8; if (checkPossible(a, b, n)) cout << "Yes"; else cout << "No"; return 0; }
Java
// Java program to find if number N can // be represented as sum of a's and b's import java.util.*; class solution { // Function to find if number N can // be represented as sum of a's and b's static void checkIfPossibleRec(int x, int a, int b, boolean isPossible[], int n) { // base condition if (x > n) return; // if x is already visited if (isPossible[x]) return; // set x as possible isPossible[x] = true; // recursive call checkIfPossibleRec(x + a, a, b, isPossible, n); checkIfPossibleRec(x + b, a, b, isPossible, n); } static boolean checkPossible(int n, int a, int b) { boolean isPossible[]=new boolean[n + 1]; for(int i=0;i<=n;i++) isPossible[i]=false; checkIfPossibleRec(0, a, b, isPossible, n); return isPossible[n]; } // Driver program public static void main(String args[]) { int a = 3, b = 7, n = 8; if (checkPossible(a, b, n)) System.out.print("Yes"); else System.out.print( "No"); } } //contributed by Arnab Kundu
Python3
# Python3 program to find if number N can # be represented as sum of a's and b's # Function to find if number N can # be represented as sum of a's and b's def checkIfPossibleRec(x, a, b, isPossible, n): # base condition if x > n: return # If x is already visited if isPossible[x]: return # Set x as possible isPossible[x] = True # Recursive call checkIfPossibleRec(x + a, a, b, isPossible, n) checkIfPossibleRec(x + b, a, b, isPossible, n) def checkPossible(n, a, b): isPossible = [False] * (n + 1) checkIfPossibleRec(0, a, b, isPossible, n) return isPossible[n] # Driver Code if __name__ == "__main__": a, b, n = 3, 7, 8 if checkPossible(a, b, n): print("Yes") else: print("No") # This code is contributed by Rituraj Jain
C#
// C# program to find if number N can // be represented as sum of a's and b's using System; class GFG { // Function to find if number N can // be represented as sum of a's and b's static void checkIfPossibleRec(int x, int a, int b, bool []isPossible, int n) { // base condition if (x > n) return; // if x is already visited if (isPossible[x]) return; // set x as possible isPossible[x] = true; // recursive call checkIfPossibleRec(x + a, a, b, isPossible, n); checkIfPossibleRec(x + b, a, b, isPossible, n); } static bool checkPossible(int n, int a, int b) { bool []isPossible = new bool[n + 1]; for(int i = 0; i <= n; i++) isPossible[i] = false; checkIfPossibleRec(0, a, b, isPossible, n); return isPossible[n]; } // Driver Code static public void Main () { int a = 3, b = 7, n = 8; if (checkPossible(a, b, n)) Console.WriteLine("Yes"); else Console.WriteLine( "No"); } } // This code is contributed by Sach_Code
PHP
<?php // PHP program to find if number N can // be represented as sum of a's and b's // Function to find if number N can // be represented as sum of a's and b's function checkIfPossibleRec($x, $a, $b, $isPossible, $n) { // base condition if ($x > $n) return; // if x is already visited if ($isPossible == true) return; // set x as possible $isPossible[$x] = true; // recursive call checkIfPossibleRec($x + $a, $a, $b, $isPossible, $n); checkIfPossibleRec($x + $b, $a, $b, $isPossible, $n); } function checkPossible($n, $a, $b) { $isPossible[$n + 1] = array(false); checkIfPossibleRec(0, $a, $b, $isPossible, $n); return $isPossible; } // Driver Code $a = 3; $b = 7; $n = 8; if (checkPossible($a, $b, $n)) echo "No"; else echo "Yes"; // This code is contributed by Sach_Code ?>
Javascript
<script> // Javascript program to find if number N can // be represented as sum of a's and b's // Function to find if number N can // be represented as sum of a's and b's function checkIfPossibleRec(x, a, b, isPossible, n) { // Base condition if (x > n) return; // If x is already visited if (isPossible[x]) return; // Set x as possible isPossible[x] = true; // Recursive call checkIfPossibleRec(x + a, a, b, isPossible, n); checkIfPossibleRec(x + b, a, b, isPossible, n); } function checkPossible(n, a, b) { var isPossible = Array(n + 1).fill(false); checkIfPossibleRec(0, a, b, isPossible, n); return isPossible[n]; } // Driver code var a = 3, b = 7, n = 8; if (checkPossible(a, b, n)) document.write("Yes"); else document.write("No"); // This code is contributed by todaysgaurav </script>
No
Complejidad de tiempo: O(2^n), complejidad de tiempo de función recursiva
Espacio auxiliar: O(n), ya que el espacio adicional de tamaño (n+1) se usa para hacer una array booleana
Publicación traducida automáticamente
Artículo escrito por pawan_asipu y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA