Dados dos enteros N y X . La tarea es encontrar la suma de la serie tan(x) hasta N términos.
Las series :
x + x 3 /3 + 2x 5 /15 + 17x 7 /315 + 62x 9 /2835……..
Ejemplos:
Entrada: N = 6, X = 1
Salida: El valor de la expansión es 1,55137626113259
Entrada: N = 4, X = 2
Salida: El valor de la expansión es 1,52063492063426
Enfoque: Aquí
se muestra la expansión de tan(x) . Calcule cada término usando bucles simples y obtenga la respuesta requerida.
C++
// CPP program to find tan(x) expansion #include <bits/stdc++.h> using namespace std; // Function to find factorial of a number int fac(int num) { if (num == 0) return 1; // To store factorial of a number int fact = 1; for (int i = 1; i <= num; i++) fact = fact * i; // Return the factorial of a number return fact; } // Function to find tan(x) upto n terms void Tanx_expansion(int terms, int x) { // To store value of the expansion double sum = 0; for (int i = 1; i <= terms; i += 1) { // This loops here calculate Bernoulli number // which is further used to get the coefficient // in the expansion of tan x double B = 0; int Bn = 2 * i; for (int k = 0; k <= Bn; k++) { double temp = 0; for (int r = 0; r <= k; r++) temp = temp + pow(-1, r) * fac(k) * pow(r, Bn) / (fac(r) * fac(k - r)); B = B + temp / ((double)(k + 1)); } sum = sum + pow(-4, i) * (1 - pow(4, i)) * B * pow(x, 2 * i - 1) / fac(2 * i); } // Print the value of expansion cout << setprecision(10) << sum; } // Driver code int main() { int n = 6, x = 1; // Function call Tanx_expansion(n, x); return 0; }
Java
// Java program to find tan(x) expansion class GFG { // Function to find factorial of a number static int fac(int num) { if (num == 0) return 1; // To store factorial of a number int fact = 1; for (int i = 1; i <= num; i++) fact = fact * i; // Return the factorial of a number return fact; } // Function to find tan(x) upto n terms static void Tanx_expansion(int terms, int x) { // To store value of the expansion double sum = 0; for (int i = 1; i <= terms; i += 1) { // This loops here calculate Bernoulli number // which is further used to get the coefficient // in the expansion of tan x double B = 0; int Bn = 2 * i; for (int k = 0; k <= Bn; k++) { double temp = 0; for (int r = 0; r <= k; r++) temp = temp + Math.pow(-1, r) * fac(k) * Math.pow(r, Bn) / (fac(r) * fac(k - r)); B = B + temp / ((double)(k + 1)); } sum = sum + Math.pow(-4, i) * (1 - Math.pow(4, i)) * B * Math.pow(x, 2 * i - 1) / fac(2 * i); } // Print the value of expansion System.out.printf("%.9f", sum); } // Driver code public static void main(String[] args) { int n = 6, x = 1; // Function call Tanx_expansion(n, x); } } // This code is contributed by Rajput-Ji
Python3
# Python3 program to find tan(x) expansion # Function to find factorial of a number def fac(num): if (num == 0): return 1; # To store factorial of a number fact = 1; for i in range(1, num + 1): fact = fact * i; # Return the factorial of a number return fact; # Function to find tan(x) upto n terms def Tanx_expansion(terms, x): # To store value of the expansion sum = 0; for i in range(1, terms + 1): # This loops here calculate Bernoulli number # which is further used to get the coefficient # in the expansion of tan x B = 0; Bn = 2 * i; for k in range(Bn + 1): temp = 0; for r in range(0, k + 1): temp = temp + pow(-1, r) * fac(k) \ * pow(r, Bn) / (fac(r) * fac(k - r)); B = B + temp / ((k + 1)); sum = sum + pow(-4, i) * (1 - pow(4, i)) \ * B * pow(x, 2 * i - 1) / fac(2 * i); # Print the value of expansion print("%.9f" %(sum)); # Driver code if __name__ == '__main__': n, x = 6, 1; # Function call Tanx_expansion(n, x); # This code is contributed by Rajput-Ji
C#
// C# program to find tan(x) expansion using System; class GFG { // Function to find factorial of a number static int fac(int num) { if (num == 0) return 1; // To store factorial of a number int fact = 1; for (int i = 1; i <= num; i++) fact = fact * i; // Return the factorial of a number return fact; } // Function to find tan(x) upto n terms static void Tanx_expansion(int terms, int x) { // To store value of the expansion double sum = 0; for (int i = 1; i <= terms; i += 1) { // This loop here calculates // Bernoulli number which is // further used to get the coefficient // in the expansion of tan x double B = 0; int Bn = 2 * i; for (int k = 0; k <= Bn; k++) { double temp = 0; for (int r = 0; r <= k; r++) temp = temp + Math.Pow(-1, r) * fac(k) * Math.Pow(r, Bn) / (fac(r) * fac(k - r)); B = B + temp / ((double)(k + 1)); } sum = sum + Math.Pow(-4, i) * (1 - Math.Pow(4, i)) * B * Math.Pow(x, 2 * i - 1) / fac(2 * i); } // Print the value of expansion Console.Write("{0:F9}", sum); } // Driver code public static void Main(String[] args) { int n = 6, x = 1; // Function call Tanx_expansion(n, x); } } // This code is contributed by 29AjayKumar
Javascript
<script> // JavaScript program to find tan(x) expansion // Function to find factorial of a number function fac(num) { if (num == 0) return 1; // To store factorial of a number let fact = 1; for (let i = 1; i <= num; i++) fact = fact * i; // Return the factorial of a number return fact; } // Function to find tan(x) upto n terms function Tanx_expansion(terms, x) { // To store value of the expansion let sum = 0; for (let i = 1; i <= terms; i += 1) { // This loops here calculate Bernoulli number // which is further used to get the coefficient // in the expansion of tan x let B = 0; let Bn = 2 * i; for (let k = 0; k <= Bn; k++) { let temp = 0; for (let r = 0; r <= k; r++) temp = temp + Math.pow(-1, r) * fac(k) * Math.pow(r, Bn) / (fac(r) * fac(k - r)); B = B + temp / (k + 1); } sum =sum + Math.pow(-4, i) * (1 - Math.pow(4, i)) * B * Math.pow(x, 2 * i - 1) / fac(2 * i); } // Print the value of expansion document.write(sum.toFixed(10)); } // Driver code let n = 6, x = 1; // Function call Tanx_expansion(n, x); // This code is contributed by Surbhi Tyagi. </script>
Producción:
1.551373344
Complejidad temporal: O(n 2 )
Espacio Auxiliar: O(1), ya que no se ha ocupado ningún espacio extra.
Publicación traducida automáticamente
Artículo escrito por ManishKhetan y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA