Número mínimo de inversiones de prefijo para ordenar la permutación de los primeros N números

Dados N números que tienen una permutación de primeros N números. En una sola operación se puede invertir cualquier prefijo. La tarea es encontrar el número mínimo de tales operaciones de modo que los números en la array estén en orden creciente. 
Ejemplos: 
 

Input : a[] = {3, 1, 2} 
Output : 2 
Step1: Reverse the complete array a, a[] = {2, 1, 3} 
Step2: Reverse the prefix(0-1) in s, a[] = {1, 2, 3} 

Input : a[] = {1, 2, 4, 3} 
Output : 3 
Step1: Reverse the complete array a, a[] = {3, 4, 2, 1} 
Step2: Reverse the prefix(0-1) in s, a[] = {4, 3, 2, 1} 
Step3: Reverse the complete array a, a[] = {1, 2, 3, 4} 

El enfoque para resolver este problema es utilizar BFS
 

  • Codifica los números dados en una string. Ordene la array y codifíquela en un destino de string .
  • Luego haz un BFS desde la permutación inicial. Cada vez, verifique todas las permutaciones inducidas al invertir un prefijo de la permutación actual.
  • Si no se visita, colóquelo en la cola con el recuento de reversiones realizadas.
  • Cuando la permutación de la string codificada sea la misma que la string de destino, devuelva el número de reversiones requeridas para llegar aquí.
  • Es decir, se realizan todas las permutaciones de strings y se devuelve el mínimo de ellas como respuesta.

A continuación se muestra la implementación del enfoque anterior: 
 

C++

// C++ program to find
// minimum number of prefix reversals
// to sort permutation of first N numbers
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the minimum prefix reversals
int minimumPrefixReversals(int a[], int n)
{
    string start = "";
    string destination = "", t, r;
    for (int i = 0; i < n; i++) {
        // converts the number to a character
        // and add  to string
        start += to_string(a[i]);
    }
    sort(a, a + n);
    for (int i = 0; i < n; i++) {
        destination += to_string(a[i]);
    }
 
    // Queue to store the pairs
    // of string and number of reversals
    queue<pair<string, int> > qu;
    pair<string, int> p;
 
    // Initially push the original string
    qu.push(make_pair(start, 0));
 
    // if original string is the destination string
    if (start == destination) {
        return 0;
    }
 
    // iterate till queue is empty
    while (!qu.empty()) {
 
        // pair at the top
        p = qu.front();
 
        // string
        t = p.first;
 
        // pop the top-most element
        qu.pop();
 
        // perform prefix reversals for all index and push
        // in the queue and check for the minimal
        for (int j = 2; j <= n; j++) {
            r = t;
 
            // reverse the string till prefix j
            reverse(r.begin(), r.begin() + j);
 
            // if after reversing the string from first i index
            // it is the destination
            if (r == destination) {
                return p.second + 1;
            }
 
            // push the number of reversals for string r
            qu.push(make_pair(r, p.second + 1));
        }
    }
}
 
// Driver Code
int main()
{
 
    int a[] = { 1, 2, 4, 3 };
    int n = sizeof(a) / sizeof(a[0]);
 
    // Calling function
    cout << minimumPrefixReversals(a, n);
 
    return 0;
}

Java

// Java program to find minimum
// number of prefix reversals to
// sort permutation of first N numbers
import java.util.*;
 
public class Main
{
     
    // function to find minimum prefix reversal through BFS
    public static int minimumPrefixReversals(int[] a)
    {
        // size of array
        int n = a.length;
         
        // string for initial and goal nodes
        String start = "", destination = "";
         
        // string for manipulation in while loop
        String original = "",modified = "";
         
        // node to store temporary values from front of queue
        Node temp = null;
         
        // create the starting string
        for (int i = 0; i < n; i++)
        start += a[i];
         
        // sort the array and prepare final destination string
        Arrays.sort(a);
        for (int i = 0; i < n; i++)
            destination += a[i];
         
        // this queue will store all the BFS siblings
        Queue<Node> q = new LinkedList<>();
         
        // place the starting node in queue
        q.add(new Node(start, 0));
         
        //base case:- if array is already sorted
        if (start == destination)
            return 0;
         
         
        // loop until the size of queue is empty
        while (q.size() != 0)
        {
            // put front node of queue in temporary variable
            temp = q.poll();
             
            // store the original string at this step
            original = temp.string;
             
            for (int j = 2; j <= n; j++)
            {
                // modified will be used to generate all
                // manipulation of original string
                // like if original = 1342
                // modified = 3142 , 4312 , 2431
                 
                modified = original;
                 
                // generate the permutation by reversing
                modified = reverse (modified , j);
                 
                if (modified.equals(destination))
                {
                    // if string match then return
                    // the height of the current node
                    return temp.steps + 1;
                }
                 
                // else put this node into queue
                q.add(new Node(modified,temp.steps + 1));
            }
             
        }
         
    // if no case match then default value
    return Integer.MIN_VALUE;
    }
     
    // function to reverse the string upto an index
    public static String reverse (String s , int index)
    {
        char temp []= s.toCharArray();
        int i = 0;
        while (i < index)
        {
            char c = temp[i];
            temp[i] = temp[index-1];
            temp[index-1] = c;
            i++;index--;
        }
        return String.valueOf(temp);
    }
 
    // Driver code
    public static void main(String []args)
    {
        int a[] = new int []{1,2,4,3};
        System.out.println(minimumPrefixReversals(a));
    }
     
    // Node class to store a combined set of values
    static class Node
    {
        public String string ;
        public int steps;
         
        public Node(String string,int steps)
        {
            this.string = string;
            this.steps= steps;
        }
    }
}
 
// This code is contributed by Sparsh Singhal

C#

// C# program to find minimum
// number of prefix reversals to
// sort permutation of first N numbers
using System;
using System.Collections.Generic;            
 
class GFG
{
    // Node class to store a combined set of values
    public class Node
    {
        public String str;
        public int steps;
         
        public Node(String str,int steps)
        {
            this.str = str;
            this.steps= steps;
        }
    }
     
    // function to find minimum prefix reversal through BFS
    public static int minimumPrefixReversals(int[] a)
    {
        // size of array
        int n = a.Length;
         
        // string for initial and goal nodes
        String start = "", destination = "";
         
        // string for manipulation in while loop
        String original = "", modified = "";
         
        // node to store temporary values
        // from front of queue
        Node temp = null;
         
        // create the starting string
        for (int i = 0; i < n; i++)
        start += a[i];
         
        // sort the array and prepare
        // final destination string
        Array.Sort(a);
        for (int i = 0; i < n; i++)
            destination += a[i];
         
        // this queue will store all the BFS siblings
        Queue<Node> q = new Queue<Node>();
         
        // place the starting node in queue
        q.Enqueue(new Node(start, 0));
         
        //base case:- if array is already sorted
        if (start == destination)
            return 0;
         
         
        // loop until the size of queue is empty
        while (q.Count != 0)
        {
            // put front node of queue in temporary variable
            temp = q.Dequeue();
             
            // store the original string at this step
            original = temp.str;
             
            for (int j = 2; j <= n; j++)
            {
                // modified will be used to generate all
                // manipulation of original string
                // like if original = 1342
                // modified = 3142 , 4312 , 2431
                 
                modified = original;
                 
                // generate the permutation by reversing
                modified = reverse (modified , j);
                 
                if (modified.Equals(destination))
                {
                    // if string match then return
                    // the height of the current node
                    return temp.steps + 1;
                }
                 
                // else put this node into queue
                q.Enqueue(new Node(modified, temp.steps + 1));
            }
        }
         
        // if no case match then default value
        return int.MinValue;
    }
     
    // function to reverse the string upto an index
    public static String reverse (String s, int index)
    {
        char []temp = s.ToCharArray();
        int i = 0;
        while (i < index)
        {
            char c = temp[i];
            temp[i] = temp[index - 1];
            temp[index - 1] = c;
            i++;index--;
        }
        return String.Join("", temp);
    }
 
    // Driver code
    public static void Main(String []args)
    {
        int []a = new int []{1, 2, 4, 3};
        Console.WriteLine(minimumPrefixReversals(a));
    }
}
 
// This code is contributed by 29AjayKumar

Javascript

<script>
 
class Node
{
    constructor(string,steps)
    {
        this.string = string;
        this.steps= steps;
    }
}
 
function minimumPrefixReversals(a)
{
    // size of array
        let n = a.length;
          
        // string for initial and goal nodes
        let start = "", destination = "";
          
        // string for manipulation in while loop
        let original = "",modified = "";
          
        // node to store temporary values from front of queue
        let temp = null;
          
        // create the starting string
        for (let i = 0; i < n; i++)
            start += a[i];
          
        // sort the array and prepare final destination string
        a.sort(function(a,b){return a-b;});
        for (let i = 0; i < n; i++)
            destination += a[i];
          
        // this queue will store all the BFS siblings
        let q = [];
          
        // place the starting node in queue
        q.push(new Node(start, 0));
          
        //base case:- if array is already sorted
        if (start == destination)
            return 0;
          
          
        // loop until the size of queue is empty
        while (q.length != 0)
        {
            // put front node of queue in temporary variable
            temp = q.shift();
              
            // store the original string at this step
            original = temp.string;
              
            for (let j = 2; j <= n; j++)
            {
                // modified will be used to generate all
                // manipulation of original string
                // like if original = 1342
                // modified = 3142 , 4312 , 2431
                  
                modified = original;
                  
                // generate the permutation by reversing
                modified = reverse (modified , j);
                  
                if (modified == (destination))
                {
                    // if string match then return
                    // the height of the current node
                    return temp.steps + 1;
                }
                  
                // else put this node into queue
                q.push(new Node(modified,temp.steps + 1));
            }
              
        }
          
    // if no case match then default value
    return Number.MIN_VALUE;
}
 
function reverse (s,index)
{
    let temp = s.split("");
        let i = 0;
        while (i < index)
        {
            let c = temp[i];
            temp[i] = temp[index-1];
            temp[index-1] = c;
            i++;index--;
        }
        return (temp).join("");
}
 
let a = [1, 2, 4, 3];
document.write(minimumPrefixReversals(a));
 
// This code is contributed by rag2127
</script>

Python3

# Python3 program to find
# minimum number of prefix reversals
# to sort permutation of [0] N numbers
from queue import Queue
 
# Function to return the minimum prefix reversals
def minimumPrefixReversals( a,  n):
    start = ""
    destination = ""
    for i in range(n):
        # converts the number to a character
        # and add  to
        start += str(a[i])
     
    a.sort()
    for i in range(n):
        destination += str(a[i])
     
 
    # Queue to store the pairs
    # of  and number of reversals
    qu=Queue()
 
    # Initially push the original
    qu.put((start, 0))
 
    # if original  is the destination
    if (start == destination) :
        return 0
 
    # iterate till queue is empty
    while qu.not_empty :
        # pair at the top
        p = qu.get()
 
        #
        t = p[0]
 
 
 
        # perform prefix reversals for all index and push
        # in the queue and check for the minimal
        for j in range(2,n+1) :
            r = t
 
            # reverse the  till prefix j
            tmpR=list(r)
            tmpR[:j]=tmpR[j-1::-1]
            r=''.join(tmpR)
 
            # if after reversing the  from [0] i index
            # it is the destination
            if (r == destination) :
                return p[1] + 1
             
 
            # push the number of reversals for  r
            qu.put((r, p[1] + 1))
         
     
 
 
# Driver Code
if __name__ == '__main__':
 
 
    a = [ 1, 2, 4, 3]
    n = len(a)
 
    # Calling function
    print(minimumPrefixReversals(a, n))
Producción: 

3

 

Complejidad de Tiempo: O(N! * N 2
Espacio Auxiliar: O(N!) 

Publicación traducida automáticamente

Artículo escrito por gopaldave y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *