Dados dos números enteros A y B , la tarea es imprimir el número entero entre los dos, que se convertirá en un número impar por un número menor de divisiones por 2. Si ambos números se convierten en un número impar después del mismo número de operaciones, imprimir -1.
Ejemplos:
Entrada: A = 10 y B = 8
Salida: 10
Explicación:
Paso 1: A/2 = 5, B/2 = 4
Por lo tanto, A es el primer número que se convierte en un número entero impar.Entrada: A = 20 y B = 12
Salida: -1
Explicación:
Paso 1: A/2 = 10, B/2 = 6
Paso 2: A/2 = 5, B/2 = 3
Por lo tanto, A y B se convierten a un entero impar al mismo tiempo.
Enfoque ingenuo:
el enfoque más simple para resolver el problema es el siguiente:
- Comprueba si alguno de los dos números dados es par o impar. Si uno de ellos es impar, imprime ese número.
- Si ambos son impares, imprima -1.
- De lo contrario, siga dividiendo ambos por 2 en cada paso y verifique si alguno de ellos se convierte en un número entero impar o no. Si uno de ellos se convierte, imprime el valor inicial de ese número. Si ambos se convierten al mismo tiempo, imprima -1.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ program to find the first // number to be converted to an odd // integer by repetitive division by 2 #include <bits/stdc++.h> using namespace std; // Function to return the first number // to to be converted to an odd value int odd_first(int a, int b) { // Initial values int true_a = a; int true_b = b; // Perform repetitive divisions by 2 while(a % 2 != 1 && b % 2 != 1) { a = a / 2; b = b / 2; } // If both become odd at same step if (a % 2 == 1 && b % 2 == 1) return -1; // If a is first to become odd else if (a % 2 == 1) return true_a; // If b is first to become odd else return true_b; } // Driver code int main() { int a = 10; int b = 8; cout << odd_first(a, b); } // This code is contributed by code_hunt
Java
// Java program to find the first // number to be converted to an odd // integer by repetitive division by 2 import java.util.*; import java.lang.Math; import java.io.*; class GFG{ // Function to return the first number // to to be converted to an odd value static int odd_first(int a, int b) { // Initial values int true_a = a; int true_b = b; // Perform repetitive divisions by 2 while(a % 2 != 1 && b % 2 != 1) { a = a / 2; b = b / 2; } // If both become odd at same step if (a % 2 == 1 && b % 2 == 1) return -1; // If a is first to become odd else if (a % 2 == 1) return true_a; // If b is first to become odd else return true_b; } // Driver code public static void main(String[] args) { int a = 10; int b = 8; System.out.print(odd_first(a, b)); } } // This code is contributed by code_hunt
Python3
# Python3 program to find the first # number to be converted to an odd # integer by repetitive division by 2 # Function to return the first number # to to be converted to an odd value def odd_first(a, b): # Initial values true_a = a true_b = b # Perform repetitive divisions by 2 while(a % 2 != 1 and b % 2 != 1): a = a//2 b = b//2 # If both become odd at same step if a % 2 == 1 and b % 2 == 1: return -1 # If a is first to become odd elif a % 2 == 1: return true_a # If b is first to become odd else: return true_b # Driver Code a, b = 10, 8 print(odd_first(a, b))
C#
// C# program to find the first // number to be converted to an odd // integer by repetitive division by 2 using System; class GFG{ // Function to return the first number // to to be converted to an odd value static int odd_first(int a, int b) { // Initial values int true_a = a; int true_b = b; // Perform repetitive divisions by 2 while(a % 2 != 1 && b % 2 != 1) { a = a / 2; b = b / 2; } // If both become odd at same step if (a % 2 == 1 && b % 2 == 1) return -1; // If a is first to become odd else if (a % 2 == 1) return true_a; // If b is first to become odd else return true_b; } // Driver code public static void Main() { int a = 10; int b = 8; Console.Write(odd_first(a, b)); } } // This code is contributed by sanjoy_62
Javascript
<script> // Javascript program to find the first // number to be converted to an odd // integer by repetitive division by 2 // Function to return the first number // to to be converted to an odd value function odd_first(a, b) { // Initial values var true_a = a; var true_b = b; // Perform repetitive divisions by 2 while(a % 2 != 1 && b % 2 != 1) { a = a / 2; b = b / 2; } // If both become odd at same step if (a % 2 == 1 && b % 2 == 1) return -1; // If a is first to become odd else if (a % 2 == 1) return true_a; // If b is first to become odd else return true_b; } // Driver code var a = 10, b = 8; document.write(odd_first(a, b)); // This code is contributed by Ankita saini </script>
10
Complejidad de tiempo: O(log(min(a, b)))
Espacio auxiliar: O(1)
Enfoque eficiente:
siga los pasos a continuación para optimizar el enfoque anterior:
- Dividir un número por 2 es equivalente a realizar el desplazamiento a la derecha en ese número.
- Por lo tanto, el número con el bit de conjunto menos significativo entre los dos será el primero en convertirse en un número entero impar.
A continuación se muestra la implementación del enfoque anterior.
C++
// C++ Program to implement the // above approach #include <bits/stdc++.h> using namespace std; // Function to return the position // least significant set bit int getFirstSetBitPos(int n) { return log2(n & -n) + 1; } // Function return the first number // to be converted to an odd integer int oddFirst(int a, int b) { // Stores the positions of the // first set bit int steps_a = getFirstSetBitPos(a); int steps_b = getFirstSetBitPos(b); // If both are same if (steps_a == steps_b) { return -1; } // If A has the least significant // set bit if (steps_a > steps_b) { return b; } // Otherwise if (steps_a < steps_b) { return a; } } // Driver code int main() { int a = 10; int b = 8; cout << oddFirst(a, b); }
Java
// Java program implementation // of the approach import java.util.*; import java.lang.Math; import java.io.*; class GFG{ // Function to return the position // least significant set bit static int getFirstSetBitPos(int n) { return (int)(Math.log(n & -n) / Math.log(2)); } // Function return the first number // to be converted to an odd integer static int oddFirst(int a, int b) { // Stores the positions of the // first set bit int steps_a = getFirstSetBitPos(a); int steps_b = getFirstSetBitPos(b); // If both are same if (steps_a == steps_b) { return -1; } // If A has the least significant // set bit else if (steps_a > steps_b) { return b; } // Otherwise else { return a; } } // Driver code public static void main(String[] args) { int a = 10; int b = 8; System.out.print(oddFirst(a, b)); } } // This code is contributed by code_hunt
Python3
# Python3 program to implement the # above approach from math import log # Function to return the position # least significant set bit def getFirstSetBitPos(n): return log(n & -n, 2) + 1 # Function return the first number # to be converted to an odd integer def oddFirst(a, b): # Stores the positions of the # first set bit steps_a = getFirstSetBitPos(a) steps_b = getFirstSetBitPos(b) # If both are same if (steps_a == steps_b): return -1 # If A has the least significant # set bit if (steps_a > steps_b): return b # Otherwise if (steps_a < steps_b): return a # Driver code if __name__ == '__main__': a = 10 b = 8 print(oddFirst(a, b)) # This code is contributed by mohit kumar 29
C#
// C# program implementation // of the approach using System; class GFG{ // Function to return the position // least significant set bit static int getFirstSetBitPos(int n) { return (int)(Math.Log(n & -n) / Math.Log(2)); } // Function return the first number // to be converted to an odd integer static int oddFirst(int a, int b) { // Stores the positions of the // first set bit int steps_a = getFirstSetBitPos(a); int steps_b = getFirstSetBitPos(b); // If both are same if (steps_a == steps_b) { return -1; } // If A has the least significant // set bit else if (steps_a > steps_b) { return b; } // Otherwise else { return a; } } // Driver code public static void Main() { int a = 10; int b = 8; Console.Write(oddFirst(a, b)); } } // This code is contributed by sanjoy_62
Javascript
<script> // Javascript program implementation // of the approach // Function to return the position // least significant set bit function getFirstSetBitPos(n) { return (Math.log(n & -n) / Math.log(2)); } // Function return the first number // to be converted to an odd integer function oddFirst(a, b) { // Stores the positions of the // first set bit let steps_a = getFirstSetBitPos(a); let steps_b = getFirstSetBitPos(b); // If both are same if (steps_a == steps_b) { return -1; } // If A has the least significant // set bit else if (steps_a > steps_b) { return b; } // Otherwise else { return a; } } // Driver Code let a = 10; let b = 8; document.write(oddFirst(a, b)); </script>
10
Complejidad temporal: O(1)
Espacio auxiliar: O(1)
Publicación traducida automáticamente
Artículo escrito por deepanshu_rustagi y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA