Pregunta 1. ∫ (2x+1)/((x+1)(x-2)) dx
Solución:
Sea ∫ (2x+1)/((x+1)(x-2))=A/(x+1)+B/(x-2)
2x+1=A(x-2)+B(x+1))
Pon x=2
5=3B⇒B=5/3
Pon x=-1
-1=-3A ⇒ A=1/3
Asi que,
∫ (2x+1)/((x+1)(x-2)) dx
=1/3 ∫ dx/(x+1)+5/3 ∫ dx/(x-2)
=1/3 log|x+1|+5/3 log|x-2|+c
De este modo,
I=1/3 log|x+1|+5/3 log|x-2|+c
Pregunta 2. ∫ 1/(x(x-2)(x-4)) dx
Solución:
Sea ∫ 1/(x(x-2)(x-4)) dx=A/x+B/(x-2)+C/(x-4)
1=A(x-2)(x-4)+B(x)(x-4)+C×(x-2)
Pon x=0
1=8A ⇒ A=1/8
Pon x=2
1=-4B ⇒ B=-1/4
Pon x=4
1=8C ⇒ C=1/8
Asi que,
∫ 1/(x(x-2)(x-4)) dx=1/8 ∫ dx/x+(-1/4) ∫ dx/(x-2)+1/8 ∫ dx/(x-4 )
=1/8 registro|x|-1/4 registro|x-2|+1/8 registro|x-4|+c
=1/8 log|(x(x-4))/((x-2) 2 )|+c
Pregunta 3. ∫(x 2 +x-1)/(x 2 +x-6) dx
Solución:
Sea I=∫(x 2 +x-1)/(x 2 +x-6) dx
=∫ [1+5/(x 2 +x-6) ]dx
yo=∫ dx+∫ 5dx/((x+3)(x-2))
Sea 5/(x+3)(x-2)=A/(x+3) + B/(x-2)
5=A(x-2)+8(x+3)
Pon x=2
5=5B ⇒B=1
Pon x=-3
5=-5A ⇒ A=-1
I=∫ dx+∫ (-dx)/(x+3)+∫ dx/(x-2)@
=x-log|x+3|+log|x-2|+c)
Por eso,
I=x-log|x+3|+log|x-2|+c
Pregunta 4. ∫(3+4x-x 2 )/(x+2)(x-1) dx
Solución:
Sea I=∫(3+4x-x 2 )/(x+2)(x-1) dx
=∫[-1d+(5x+1)/(x+2)(x-1) ] dx
yo=-∫dx+∫(5x+1)/(x+2)(x-1) dx
Sea (5x+1)/(x+2)(x-1)=A/(x+2)+B/(x-1)
5x+1=A(x-1)+B(x+2)
Pon x=1
6=3B ⇒B=2
Pon x=-2
-9=-3A ⇒ A=3
Entonces, yo=-∫dx+3∫dx/(x+2)+2 ∫dx/(x-1)
I=-x+3log|x+2|+2log|x-1|+c
Pregunta 5. ∫(x 2 +1)/(x 2 -1) dx
Solución:
Sea I =∫(x 2 +1)/(x 2 -1) dx
=∫[1+2/(x 2 -1) ]dx
=∫dx+∫2dx/(x+1)(x-1)
=∫dx+∫(-1)/(x+1)+1/(x-1) dx
=x-log|x+1|+log|x-1|+c
I=x +log|(x-1)/(x+1)|+c
Pregunta 6. ∫x 2 /(x-1)(x-2)(x-3) dx
Solución:
Sea I=∫x 2 /(x-1)(x-2)(x-3)=A/(x-1)+B/(x-2)+C/(x-3)
x2 =A(x- 2 )(x-3)+B(x-1)(x-3)+C(x-1)(x-2)
Pon x=1
1=2A ⇒A=1/2
Pon x=2
4=-B ⇒ B=-4
Pon x=3
9=2C ⇒ C=9/2
Por lo tanto, I=∫x 2 /(x-1)(x-2)(x-3) dx=1/2∫dx/(x-1)-4j dx/(x-2)+9/2∫ dx/(x-3)
=1/2 log|x-1|-4log|x-2|+9/2 log|x-3|+c
Por eso,
I=1/2 log|x-1|-4log|x-2|+9/2 log|x-3|+c
Pregunta 7. ∫ 5x/(x+1)(x 2 -4) dx
Solución:
5x/(x+1)(x 2 -4) =5x/(x+1)(x+2)(x-2)
Sea 5x/(x+1)(x+2)(x-2)=A/(x+1)+B/(x+2)+C/(x-2)
5x=A(x+2)(x-2)+B(x+1)(x-2)+C(x+1)(x+2) ————————–(i)
Sustituyendo x=-1,-2 y 2 respectivamente en la ecuación (1), obtenemos
A=5/3, B=-5/2 y C=5/6
5x/((x+1)(x+2)(x-2))=5/(3(x+1))-5/(2(x+2))+5/(6(x-2) ))
∫ 5x/(x+1)(x 2 -4) dx
=5/3 ∫ 1/(x+1) dx-5/2 ∫ 1/(x+2) dx+5/6 ∫ 1/(x-2) dx
=5/3 log|x+1|-5/2 log|x+2|+5/6 log|x-2|+c
Pregunta 8. ∫(x 2 +1)/x(x 2 -1) dx
Solución:
Sea I=∫(x 2 +1)/x(x 2 -1) dx=∫(x 2 +1)/(x(x+1)(x-1)) dx
Sea (x 2 +1)/x(x+1)(x-1)=A/x+B/(x+1)+C/(x-1)
x2 + 1 =A(x+1)(x-1)+B⋅x(x-1)+Cx(x+1)
Pon x=0
1=-A ⇒ A=-1
Pon x=-1
2=2B ⇒B=1
Pon x=1
2=2C ⇒ C=1
Así, I=-∫dx/x+∫dx/(x+1)+∫dx/(x-1)
=-log|x|+log|x+1|+log|x-1|+c
I=log|(x 2 -1)/x|+c
Pregunta 9. ∫(2x-3)/(x 2 -1)(2x+3) dx
Solución:
Sea I=∫(2x-3)/(x 2 -1)(2x+3) dx=∫(2x-3)/((x+1)(x-1)(2x+3)) dx
Sea (2x-3)/(x+1)(x-1)(2x+3)=A/(x+1)+B/(x-1)+C/(2x+3)
2x-3=A(x-1)(2x+3)+B(x+1)(2x+3)+C(x 2 -1)
Pon x=-1
-5=-2A
A=5/2
Pon x=1
-1=10B ⇒B=-1/10
Pon x=-3/2
-6=5/4 C ⇒ C=-24/5
De este modo,
I =5/2 ∫ dx/(x+1)-1/10 ∫ dx/(x-1)-24/5 ∫ dx/(2x+3)
=5/2 log|x+1|-1/10 log|x-1|-24/5(1/2 log|2x+3|)+c
Por eso,
I=5/2 log|x+1|-1/10 log|x-1|-12/5 log|2x+3|+c
Pregunta 10. ∫ x 3 /(x-1)(x-2)(x-3) dx
Solución:
Sea I =∫ x 3 /(x-1)(x-2)(x-3) dx
=∫ [ 1+(6x 2 -9x+6)/(x-1)(x-2)(x-3)] dx
Sea (6x 2 -11x+6)/(x-1)(x-2)(x-3)=A/(x-1)+B/(x-2)+C/(x-3)
6x 2 -11x+6=A(x-2)(x-3)+B(x-1)(x-3)+C(x-1)(x-2)
Pon x=1
1=2A ⇒A=1/2
Pon x=2
8=-B ⇒ B=-8
Pon x=3
27=2C ⇒ C=27/2
Por lo tanto, I=∫dx+1/2∫dx/(x-1)-8∫dx/(x-2)+27/2∫dx/(x-3)
=x+1/2 log|x-1|-8log|x-2|+27/2 log|x-3|+c
Por eso,
I=x+1/2 log|x-1|-8log|x-2|+27/2 log|x-3|+c
Pregunta 11. ∫(sen2x)/(1+senx)(2+senx) dx
Solución:
Sea ∫(sin2x)/(1+sinx)(2+sinx) dx=A/(1+sinx)+B/(2+sinx)
sin2x=A(2+sinx)+B(1+sinx)
2senxcosx=(2A+B)+(A+B)senx
Igualando términos similares, obtenemos,
2A+B=0 ⇒ B=-2A y
A+B=2cosx ⇒ -A=2cosx
A=-2cosx y B=+4cosx
De este modo,
yo=∫-(2cosx)/(1+senx)dx+∫(4cosx)/(2+senx)dx
=-2log|1+senx|+4log|2+senx|+c
I=log|((2+senx) 4 )/((1+senx) 2 )|+c
Pregunta 12. ∫2x/(x 2 +1)(x 2 +3) dx
Solución:
Sea ∫2x/(x 2 +1)(x 2 +3) dx=(Ax+8)/(x 2 +1)+(cx+D)/(x 2 +3)
2x =(Ax+B)(x 2 +3)+(Cx+D)(x 2 +1)
=(A+C)x 3 +(B+D)x 2 +(3A+C)x+(3B+D))
Igualando términos similares, obtenemos,
A+C=0,B+D=0,3A+C=2 y 3B+D=0
A=-C, B=D=0
2A=2 ⇒ A=1 y C=-1
De este modo,
I=∫xdx/(x 2 +1)-∫xdx/(x 2 +3)
=1/2 log|x 2 +1|-1/2 log|x 2 +3|+c
I=1/2 log|(x 2 +1)/(x 2 +3)|+c
Pregunta 13. ∫1/(xlogx(2+logx)) dx
Solución:
Sea ∫1/(xlogx(2+logx))=A/(xlogx)+B/(x(2+logx))
1=A(2+logx)+8logx
Pon x=1
1=2A ⇒A=1/2
Pon x=10 -2
1=-2B ⇒ B=-1/2
I=1/2∫dx/(xlogx)+(-1/2)∫dx/(x(2+logx))
=1/2 log|logx|-1/2 log|2+logx|+c
I=1/2 log|(logx)/(2+logx)|+c
Pregunta 14. ∫ (ax 2 +bx+c)/((xa)(xb)(xc)) dx
Solución:
Sea (ax 2 +bx+c)/((xa)(xb)(xc))=A/(xa)+B/(xb)+C/(xc)
hacha 2 +bx+c=A(xb)(xc)+B(xa)(xc)+c(xa)(xb)
Pon x=a
a 3 +ba+c=(ab)(ac)A ⇒ A=(a 3 +ba+c)/((ab)(ac))
Pon x=b
ab 2 +b 2 +c=(ba)(bc)B ⇒ B=(ab 2 +b 2 +c)/((ba)(bc))
Pon x=c
ac 2 +bc+c=(ca)(cb)c ⇒ c=(ac 2 +bc+c)/((ca)(cb))
I=(a 3 +ba+c)/((ab)(ac))∫dx/(xa)+(ab 2 +b 2 +c)/((ba)(bc))∫dx/(xb) +(ac 2 +bc+c)/((ca)(cb))∫dx/(xc)
Por eso,
I=(a 3 +ba+c)/((ab)(ac)) log|xa|+(ab 2 +b 2 +c)/((ba)(bc)) log|xb|+( ac 2 +bc+c)/((ca)(cb)) log|xc|+c
Pregunta 15. ∫ x/((x 2 +1)(x-1)) dx
Solución:
Considere la integral
yo=∫ x/((x 2 +1)(x-1)) dx
Ahora separemos la fracción x/((x 2 +1)(x-1)) en fracciones parciales.
x/(x 2 +1)(x-1)=A/(x-1)+(Bx+C)/(x 2 +1) 2
x/(x 2 +1)(x-1)=(A(x 2 +1)+(Bx+C)(x-1))/((x 2 +1)(x-1))
x=A(x2 + 1)+(Bx+C)(x-1)
x=Ax 2 +A+Bx 2 -Bx+Cx-C
Comparando los coeficientes, tenemos,
A+B=0,
-B+C=1 y
CA=0
Resolviendo las ecuaciones, obtenemos,
A=1/2 ,
B=-1/2 y C=1/2
x/((x 2 +1)(x-1))=A/(x-1)+(Bx+C)/(x 2 +1)
x/((x2 + 1 )(x-1))=1/2×1/(x-1)-1/2×(x-1)/(x2 +1 )
x/((x2 +1)(x- 1 ))=1/( 2 (x-1))-x/2(x2 +1 ) +1/2(x2 +1)
Por lo tanto, tenemos, I=∫x/((x 2 +1)(x-1)) dx
=∫[1/( 2 (x-1))-x/2(x2 +1 ) +1/2(x2 +1)]dx
=∫dx/(2(x-1))-∫xdx/2(x^2+1) +∫dx/2(x^2+1)
=1/2∫dx/((x-1))-1/2∫xdx/(x 2 +1) +1/2∫dx/(x 2 +1)
=1/2∫dx/((x-1))-1/2×1/2∫2xdx/((x 2 +1))+1/2∫dx/((x 2 +1))
=1/2 log|x-1|-1/4 log|(x 2 +1)|+1/2 tan -1 x+C
Pregunta 16. ∫ 1/(x-1)(x+1)(x+2) dx
Solución:
Sea I=∫1/(x-1)(x+1)(x+2)=A/(x-1)+B/(x+1)+C/(x+2)
1=A(x+1)(x+2)+B(x-1)(x+2)+c(x 2 -1)
Pon x=1
1=6A ⇒ A=1/6
Pon x=-1
1=-2B ⇒ B=-1/2
Pon x=-2
1=3C ⇒ C=1/3
Asi que,
yo=1/6∫dx/(x-1)-1/2∫dx/(x+1)+1/3∫dx/(x+2)
I=1/6 log|x-1|-1/2 log|x+1|+1/3 log|x+2|+c
Pregunta 17. ∫x 2 /(x 2 +4)(x 2 +9) dx
Solución:
Considere la integral
yo=∫x 2 /(x 2 +4)(x 2 +9) dx
Ahora separemos la fracción x 2 /(x 2 +4)(x 2 +9)
a través de fracciones parciales.
Sustituye x 2 = t
x2 /(x2 + 4 )( x2 + 9) =t/(t+4)(t+9)
t/(t+4)(t+9) = A/(t+4) + B/(t+9)
t/(t+4)(t+9) = (A(t+9)+B(t+4))/(t+4)(t+9)
t=A(t+9)+B(t+4)
t=En+9A+Bt+4B
Comparando los coeficientes, tenemos,
A+B=1 y 9A+4B=0
A=-4/5 y B =9/5
x2 /(x2 + 4 )(x2 + 9) =-4/(5(t+4))+9/(5(t+9))
x2 /(x2 +4 ) (x2+ 9 ) =-4/5(x2 + 4 ) +9/5(x2+ 9 )
Así, tenemos,
yo=∫x 2 /(x 2 +4)(x 2 +9) dx
=∫[-4/5(x 2 +4) +9/5(x 2 +9) ]dx
=-∫4dx/5(x2 + 4 ) + ∫9dx/5(x2+9 )
=-4/5∫dx/(x 2 +4) +9/5∫dx/(x 2 +9)
=-4/5×1/2 bronceado -1 (x/2)+9/5×1/3 bronceado -1 (x/3)+C
=-2/5 tan -1 (x/2)+3/5 tan -1 (x/3)+C
Pregunta 18. ∫(5x 2 -1)/x(x-1)(x+1) dx
Solución:
Sea ∫(5x 2 -1)/x(x-1)(x+1) dx=A/x+B/(x-1)+C/(x+1)
5x 2 -1=A(x 2 -1)+B(x+1)x+C(x-1)x
Pon x=0
-1=-A ⇒ A=1
Pon x=+1
4=2B ⇒B=2
Pon x=-1
4=2C ⇒ C=2
Asi que,
yo=∫dx/x+∫2dx/(x-1)+∫2dx/(x+1)
=log|x|+2log|x-1|+2log|x+1|+c
yo=log|x(x 2 -1) 2 |+c
Pregunta 19. ∫(x²+6x-8)/(x 3 -4x)dx
Solución:
Sea I=∫(x²+6x-8) /x(x+2)(x-2) dx
Ahora,
sea (x²+6x-8)/x(x+2)(x-2)=A/(x)+B/(x+2)+C/(x-2)
x²+6x-8=A(x²-4)+B(x-2)+C(x(x+2))
Pon x=0
-8=-4A
A=2
Pon x=-2
-16=8B
B=-2
Pon x=2
8=8C
c=1
De este modo,
yo=∫2dx/x-∫dx/(x+2)+∫dx/(x-2)
=2log|x|-log|x+2|+log|x-2|+c
I=log|(x²(x-2))/(x+2)²|+c
Pregunta 20. ∫(x²+1)/(2x+1)(x²-1) dx
Solución:
(x²+1)/(2x+1)(x²-1) =A/(2x+1)+Bx+C/(x²-1)
x²+1=A(x²-1)+(Bx+C)(2x+1)
=(A+2B)x²+(B+2C)*+(-A+c)
Igualando términos similares, obtenemos
A+2B=1 , B+2C=0 y -A+C=1
Al resolver obtenemos,
A=-5/3 B=4/3 C=-2/3
De este modo,
I=-5/3∫dx/(2x+1) +∫(4x/3-2/3)/(x²-1) dx
=-5/3∫dx/(2x+1)+2/3∫2x/(x²-1)dx-2/3∫dx/(x²-1)
=-5/3∫dx/(2x+1)+2/3∫(2x-1)/((x+1)(x-1)) dx
=-5/3∫dx/(2x+1)+2/3∫{(3/2)/(x+1)+(1/2)/(x-1)}dx
I=-(5/6) * registro|2x+1|+registro|x+1|+1/3registro|x-1|+c
Publicación traducida automáticamente
Artículo escrito por anandchaturvedirishra y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA