La metabúsqueda binaria (también llamada búsqueda binaria unilateral por Steven Skiena en El manual de diseño de algoritmos en la página 134) es una forma modificada de búsqueda binaria que construye de forma incremental el índice del valor objetivo en la array. Al igual que la búsqueda binaria normal, la búsqueda binaria meta lleva un tiempo O (log n).
Ejemplos:
Input: [-10, -5, 4, 6, 8, 10, 11], key_to_search = 10 Output: 5 Input: [-2, 10, 100, 250, 32315], key_to_search = -2 Output: 0
La implementación exacta varía, pero el algoritmo básico tiene dos partes:
- Calcule cuántos bits son necesarios para almacenar el índice de array más grande.
- Construya de forma incremental el índice del valor objetivo en la array determinando si cada bit en el índice debe establecerse en 1 o 0.
Acercarse:
- Almacene el número de bits para representar el índice de array más grande en la variable lg.
- Use lg para comenzar la búsqueda en un bucle for.
- Si se encuentra el elemento, devuelva pos.
- De lo contrario, construya un índice de forma incremental para alcanzar el valor objetivo en el bucle for.
- Si se encuentra el elemento, devuelve pos; de lo contrario, -1.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ implementation of above approach #include <iostream> #include <cmath> #include <vector> using namespace std; // Function to show the working of Meta binary search int bsearch(vector<int> A, int key_to_search) { int n = (int)A.size(); // Set number of bits to represent largest array index int lg = log2(n-1)+1; //while ((1 << lg) < n - 1) //lg += 1; int pos = 0; for (int i = lg ; i >= 0; i--) { if (A[pos] == key_to_search) return pos; // Incrementally construct the // index of the target value int new_pos = pos | (1 << i); // find the element in one // direction and update position if ((new_pos < n) && (A[new_pos] <= key_to_search)) pos = new_pos; } // if element found return pos otherwise -1 return ((A[pos] == key_to_search) ? pos : -1); } // Driver code int main(void) { vector<int> A = { -2, 10, 100, 250, 32315 }; cout << bsearch(A, 10) << endl; return 0; } // This implementation was improved by Tanin
Java
//Java implementation of above approach import java.util.Vector; import com.google.common.math.BigIntegerMath; import java.math.*; class GFG { // Function to show the working of Meta binary search static int bsearch(Vector<Integer> A, int key_to_search) { int n = (int) A.size(); // Set number of bits to represent largest array index int lg = BigIntegerMath.log2(BigInteger.valueOf(n-1),RoundingMode.UNNECESSARY) + 1; //while ((1 << lg) < n - 1) { // lg += 1; //} int pos = 0; for (int i = lg - 1; i >= 0; i--) { if (A.get(pos) == key_to_search) { return pos; } // Incrementally construct the // index of the target value int new_pos = pos | (1 << i); // find the element in one // direction and update position if ((new_pos < n) && (A.get(new_pos) <= key_to_search)) { pos = new_pos; } } // if element found return pos otherwise -1 return ((A.get(pos) == key_to_search) ? pos : -1); } // Driver code static public void main(String[] args) { Vector<Integer> A = new Vector<Integer>(); int[] arr = {-2, 10, 100, 250, 32315}; for (int i = 0; i < arr.length; i++) { A.add(arr[i]); } System.out.println(bsearch(A, 10)); } } // This code is contributed by 29AjayKumar // This implementation was improved by Tanin
Python 3
# Python 3 implementation of # above approach # Function to show the working # of Meta binary search import math def bsearch(A, key_to_search): n = len(A) # Set number of bits to represent lg = int(math.log2(n-1)) + 1; # largest array index #while ((1 << lg) < n - 1): #lg += 1 pos = 0 for i in range(lg - 1, -1, -1) : if (A[pos] == key_to_search): return pos # Incrementally construct the # index of the target value new_pos = pos | (1 << i) # find the element in one # direction and update position if ((new_pos < n) and (A[new_pos] <= key_to_search)): pos = new_pos # if element found return # pos otherwise -1 return (pos if(A[pos] == key_to_search) else -1) # Driver code if __name__ == "__main__": A = [ -2, 10, 100, 250, 32315 ] print( bsearch(A, 10)) # This implementation was improved by Tanin # This code is contributed # by ChitraNayal
C#
//C# implementation of above approach using System; using System.Collections.Generic; class GFG { // Function to show the working of Meta binary search static int bsearch(List<int> A, int key_to_search) { int n = (int) A.Count; //int lg = 0; // Set number of bits to represent largest array index int lg = (int)Math.Log(n-1, 2.0) + 1; // This is redundant and will cause error //while ((1 << lg) < n - 1) //{ // lg += 1; //} int pos = 0; for (int i = lg - 1; i >= 0; i--) { if (A[pos] == key_to_search) { return pos; } // Incrementally construct the // index of the target value int new_pos = pos | (1 << i); // find the element in one // direction and update position if ((new_pos < n) && (A[new_pos] <= key_to_search)) { pos = new_pos; } } // if element found return pos otherwise -1 return ((A[pos] == key_to_search) ? pos : -1); } // Driver code static public void Main() { List<int> A = new List<int>(); int[] arr = {-2, 10, 100, 250, 32315}; for (int i = 0; i < arr.Length; i++) { A.Add(arr[i]); } Console.WriteLine(bsearch(A, 10)); } } // This code is contributed by Rajput-Ji // This implementation was improved by Tanin
PHP
<?php // PHP implementation of above approach // Function to show the working of // Meta binary search function bsearch($A, $key_to_search, $n) { // Set number of bits to represent $lg = log($n-1, 2) + 1; // largest array index // This is redundant and will cause error for some case //while ((1 << $lg) < $n - 1) //$lg += 1; $pos = 0; for ($i = $lg - 1; $i >= 0; $i--) { if ($A[$pos] == $key_to_search) return $pos; // Incrementally construct the // index of the target value $new_pos = $pos | (1 << $i); // find the element in one // direction and update $position if (($new_pos < $n) && ($A[$new_pos] <= $key_to_search)) $pos = $new_pos; } // if element found return $pos // otherwise -1 return (($A[$pos] == $key_to_search) ? $pos : -1); } // Driver code $A = [ -2, 10, 100, 250, 32315 ]; $ans = bsearch($A, 10, 5); echo $ans; // This code is contributed by AdeshSingh1 // This implementation was improved by Tanin ?>
Javascript
<script> // Javascript implementation of above approach // Function to show the working of Meta binary search function bsearch(A, key_to_search) { let n = A.length; // Set number of bits to represent largest array index let lg = parseInt(Math.log(n-1) / Math.log(2)) + 1; //while ((1 << lg) < n - 1) //lg += 1; let pos = 0; for (let i = lg ; i >= 0; i--) { if (A[pos] == key_to_search) return pos; // Incrementally construct the // index of the target value let new_pos = pos | (1 << i); // find the element in one // direction and update position if ((new_pos < n) && (A[new_pos] <= key_to_search)) pos = new_pos; } // if element found return pos otherwise -1 return ((A[pos] == key_to_search) ? pos : -1); } // Driver code let A = [ -2, 10, 100, 250, 32315 ]; document.write(bsearch(A, 10)); </script>
Producción:
1
Referencia: https://www.quora.com/What-is-meta-binary-search
Publicación traducida automáticamente
Artículo escrito por Varun Thakur y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA