Número de elementos de la array a los que se puede acceder después de realizar determinadas operaciones en D

Dada una array arr[] y tres enteros D , A y B . Comienza con el número D y en cualquier momento puede sumar o restar A o B al número actual. Eso significa que puede hacer las siguientes cuatro operaciones cualquier número de veces: 
 

  1. Agregue A al número actual.
  2. Resta A del número actual.
  3. Sume B al número actual.
  4. Resta B del número actual.

La tarea es encontrar el recuento de enteros de la array dada que se puede alcanzar después de realizar las operaciones anteriores.
Ejemplos: 
 

Entrada: arr[] = {4, 5, 6, 7, 8, 9}, D = 4, A = 4, B = 6 
Salida:
Los números accesibles son: 
4 = 4 
6 = 4 + 6 – 4 
8 = 4 + 4
Entrada: arr[] = {24, 53, 126, 547, 48, 97}, D = 2, A = 5, B = 8 
Salida:
 

Enfoque: Este problema se puede resolver usando una propiedad de las ecuaciones diofánticas
Sea x el número entero al que queremos llegar desde la array . Si comenzamos con D y podemos sumar/restar A o B cualquier número de veces, eso significa que debemos encontrar si la siguiente ecuación tiene una solución entera o no.
 

D + p * A + q * B = x

Si tiene soluciones enteras en p y q , significa que podemos alcanzar el número entero x desde D , de lo contrario no. 
Reordenar esta ecuación para 
 

p * A + q * B = x – D

Esta ecuación tiene una solución entera si y solo si (x – D) % MCD(A, B) = 0 .
Ahora itere sobre los enteros en la array y verifique si esta ecuación tiene una solución o no para la x actual .
A continuación se muestra la implementación del enfoque anterior: 
 

C++

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the GCD
// of a and b
int GCD(int a, int b)
{
    if (b == 0)
        return a;
    return GCD(b, a % b);
}
 
// Function to return the count of reachable
// integers from the given array
int findReachable(int arr[], int D, int A,
                  int B, int n)
{
 
    // GCD of A and B
    int gcd_AB = GCD(A, B);
 
    // To store the count of reachable integers
    int count = 0;
    for (int i = 0; i < n; i++) {
 
        // If current element can be reached
        if ((arr[i] - D) % gcd_AB == 0)
            count++;
    }
 
    // Return the count
    return count;
}
 
// Driver code
int main()
{
    int arr[] = { 4, 5, 6, 7, 8, 9 };
    int n = sizeof(arr) / sizeof(int);
    int D = 4, A = 4, B = 6;
 
    cout << findReachable(arr, D, A, B, n);
 
    return 0;
}

Java

// Java implementation of the approach
class GFG
{
 
    // Function to return the GCD
    // of a and b
    static int GCD(int a, int b)
    {
        if (b == 0)
            return a;
        return GCD(b, a % b);
    }
 
    // Function to return the count of reachable
    // integers from the given array
    static int findReachable(int[] arr, int D, int A,
                    int B, int n)
    {
 
        // GCD of A and B
        int gcd_AB = GCD(A, B);
 
        // To store the count of reachable integers
        int count = 0;
        for (int i = 0; i < n; i++)
        {
 
            // If current element can be reached
            if ((arr[i] - D) % gcd_AB == 0)
                count++;
        }
 
        // Return the count
        return count;
    }
 
    // Driver code
    public static void main(String[] args)
    {
 
        int arr[] = { 4, 5, 6, 7, 8, 9 };
        int n = arr.length;
        int D = 4, A = 4, B = 6;
 
        System.out.println(findReachable(arr, D, A, B, n));
 
    }
}
 
// This code is contributed by Rajput-Ji

Python3

# Python implementation of the approach
 
# Function to return the GCD
# of a and b
def GCD(a, b):
    if (b == 0):
        return a;
    return GCD(b, a % b);
 
 
# Function to return the count of reachable
# integers from the given array
def findReachable(arr, D, A, B, n):
 
    # GCD of A and B
    gcd_AB = GCD(A, B);
 
    # To store the count of reachable integers
    count = 0;
    for i in range(n):
 
        # If current element can be reached
        if ((arr[i] - D) % gcd_AB == 0):
            count+=1;
 
    # Return the count
    return count;
 
# Driver code
arr = [ 4, 5, 6, 7, 8, 9 ];
n = len(arr);
D = 4; A = 4; B = 6;
 
print(findReachable(arr, D, A, B, n));
 
# This code is contributed by 29AjayKumar

C#

// C# implementation of the approach
using System;
 
class GFG
{
 
    // Function to return the GCD
    // of a and b
    static int GCD(int a, int b)
    {
        if (b == 0)
            return a;
        return GCD(b, a % b);
    }
 
    // Function to return the count of reachable
    // integers from the given array
    static int findReachable(int[] arr, int D, int A,
                    int B, int n)
    {
 
        // GCD of A and B
        int gcd_AB = GCD(A, B);
 
        // To store the count of reachable integers
        int count = 0;
        for (int i = 0; i < n; i++)
        {
 
            // If current element can be reached
            if ((arr[i] - D) % gcd_AB == 0)
                count++;
        }
 
        // Return the count
        return count;
    }
 
    // Driver code
    public static void Main()
    {
 
        int []arr = { 4, 5, 6, 7, 8, 9 };
        int n = arr.Length;
        int D = 4, A = 4, B = 6;
 
        Console.WriteLine(findReachable(arr, D, A, B, n));
 
    }
}
 
// This code is contributed by AnkitRai01

Javascript

<script>
// javascript implementation of the approach   
// Function to return the GCD
    // of a and b
    function GCD(a , b) {
        if (b == 0)
            return a;
        return GCD(b, a % b);
    }
 
    // Function to return the count of reachable
    // integers from the given array
    function findReachable(arr, D, A, B, n)
    {
 
        // GCD of A and B
        var gcd_AB = GCD(A, B);
 
        // To store the count of reachable integers
        var count = 0;
        for (i = 0; i < n; i++)
        {
 
            // If current element can be reached
            if ((arr[i] - D) % gcd_AB == 0)
                count++;
        }
 
        // Return the count
        return count;
    }
 
    // Driver code
        var arr = [ 4, 5, 6, 7, 8, 9 ];
        var n = arr.length;
        var D = 4, A = 4, B = 6;
 
        document.write(findReachable(arr, D, A, B, n));
 
// This code is contributed by aashish1995
</script>
Producción: 

3

 

Complejidad de tiempo: O(n * log(min(a, b))), donde a y b son dos parámetros para GCD.

Espacio auxiliar: O(log(min(a, b)))

Publicación traducida automáticamente

Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *