Dada una array arr[] de tamaño N , la tarea es contar el número de subconjuntos de arr[] cuya media es máxima.
Ejemplos:
Entrada: arr[] = {1, 2, 1, 2}
Salida: 3
Subconjuntos con media máxima son {2}, {2} y {2, 2}.Entrada: arr[] = {1}
Salida: 1
Enfoque: el valor máximo para la media de cualquier subconjunto será cuando el subconjunto solo consista en el elemento máximo de la array. Entonces, para contar todos los subconjuntos posibles, encuentre la frecuencia del elemento máximo de la array, digamos cnt , y el recuento de los subconjuntos posibles será 2 cnt – 1 .
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Function to return the count of // subsets with the maximum mean int cntSubSets(int arr[], int n) { // Maximum value from the array int maxVal = *max_element(arr, arr + n); // To store the number of times maximum // element appears in the array int cnt = 0; for (int i = 0; i < n; i++) { if (arr[i] == maxVal) cnt++; } // Return the count of valid subsets return (pow(2, cnt) - 1); } // Driver code int main() { int arr[] = { 1, 2, 1, 2 }; int n = sizeof(arr) / sizeof(int); cout << cntSubSets(arr, n); return 0; }
Java
// Java implementation of the approach import java.util.*; class GFG { // Function to return the count of // subsets with the maximum mean static int cntSubSets(int arr[], int n) { // Maximum value from the array int maxVal = Arrays.stream(arr).max().getAsInt(); // To store the number of times maximum // element appears in the array int cnt = 0; for (int i = 0; i < n; i++) { if (arr[i] == maxVal) cnt++; } // Return the count of valid subsets return (int) (Math.pow(2, cnt) - 1); } // Driver code public static void main(String []args) { int arr[] = { 1, 2, 1, 2 }; int n = arr.length; System.out.println(cntSubSets(arr, n)); } } // This code is contributed by Rajput-Ji
Python3
# Python3 implementation of the approach # Function to return the count of # subsets with the maximum mean def cntSubSets(arr, n) : # Maximum value from the array maxVal = max(arr); # To store the number of times maximum # element appears in the array cnt = 0; for i in range(n) : if (arr[i] == maxVal) : cnt += 1; # Return the count of valid subsets return ((2 ** cnt) - 1); # Driver code if __name__ == "__main__" : arr= [ 1, 2, 1, 2 ]; n = len(arr); print(cntSubSets(arr, n)); # This code is contributed by AnkitRai01
C#
// C# implementation of the approach using System; using System.Linq; class GFG { // Function to return the count of // subsets with the maximum mean static int cntSubSets(int []arr, int n) { // Maximum value from the array int maxVal = arr.Max(); // To store the number of times maximum // element appears in the array int cnt = 0; for (int i = 0; i < n; i++) { if (arr[i] == maxVal) cnt++; } // Return the count of valid subsets return (int) (Math.Pow(2, cnt) - 1); } // Driver code public static void Main(String []args) { int []arr = { 1, 2, 1, 2 }; int n = arr.Length; Console.WriteLine(cntSubSets(arr, n)); } } // This code is contributed by 29AjayKumar
Javascript
<script> // Javascript implementation of the approach // Function to return the count of // subsets with the maximum mean function cntSubSets(arr, n) { // Maximum value from the array var maxVal = arr.reduce(function(a, b) { return Math.max(a, b); }); // To store the number of times maximum // element appears in the array var cnt = 0; for (var i = 0; i < n; i++) { if (arr[i] == maxVal) cnt++; } // Return the count of valid subsets return (Math.pow(2, cnt) - 1); } // Driver code var arr = [ 1, 2, 1, 2 ] var n = arr.length; document.write(cntSubSets(arr, n)); </script>
Producción:
3
Complejidad de tiempo: O(n)
Espacio Auxiliar: O(1)