La suma más pequeña y más grande de dos números de n dígitos

Dado un número entero N ≥ 1 , la tarea es encontrar la suma más pequeña y más grande de dos números de N dígitos.
Ejemplos: 
 

Entrada: N = 1 
Salida: 
Mayor = 18 
Menor = 0 
El mayor número de 1 dígito es 9 y 9 + 9 = 18 
El menor número de 1 dígito es 0 y 0 + 0 = 0
Entrada: N = 2 
Salida: 
Mayor = 198 
Menor = 20 
 

Acercarse: 
 

  • Para el más grande: la respuesta será 2 * (10 N – 1) porque la serie de la suma de dos números de n dígitos continuará como 2 * 9, 2 * 99, 2 * 999, …
  • Para los más pequeños: 
    • Si N = 1 , la respuesta será 0 .
    • Si N > 1 , la respuesta será 2 * (10 N – 1 ) porque la serie de la suma de dos números de n dígitos seguirá como 0, 20, 200, 2000, …

A continuación se muestra la implementación del enfoque anterior:
 

C++

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the smallest sum
// of 2 n-digit numbers
int smallestSum(int n)
{
    if (n == 1)
        return 0;
    return (2 * pow(10, n - 1));
}
 
// Function to return the largest sum
// of 2 n-digit numbers
int largestSum(int n)
{
    return (2 * (pow(10, n) - 1));
}
 
// Driver code
int main()
{
    int n = 4;
    cout << "Largest = " << largestSum(n) << endl;
    cout << "Smallest = " << smallestSum(n);
 
    return 0;
}

Java

// Java implementation of the approach
class GFG {
 
    // Function to return the smallest sum
    // of 2 n-digit numbers
    static int smallestSum(int n)
    {
        if (n == 1)
            return 0;
        return (2 * (int)Math.pow(10, n - 1));
    }
 
    // Function to return the largest sum
    // of 2 n-digit numbers
    static int largestSum(int n)
    {
        return (2 * ((int)Math.pow(10, n) - 1));
    }
 
    // Driver code
    public static void main(String args[])
    {
        int n = 4;
        System.out.println("Largest = " + largestSum(n));
        System.out.print("Smallest = " + smallestSum(n));
    }
}

Python3

# Python3 implementation of the approach
 
# Function to return the smallest sum
# of 2 n-digit numbers
def smallestSum(n):
  
    if (n == 1):
        return 0
    return (2 * pow(10, n - 1))
 
# Function to return the largest sum
# of 2 n-digit numbers
def largestSum(n):
    return (2 * (pow(10, n) - 1))
 
# Driver code
n = 4
print("Largest = ", largestSum(n))
print("Smallest = ", smallestSum(n))

C#

// C# implementation of the approach
using System;
class GFG {
 
    // Function to return the smallest sum
    // of 2 n-digit numbers
    static int smallestSum(int n)
    {
        if (n == 1)
            return 0;
        return (2 * (int)Math.Pow(10, n - 1));
    }
 
    // Function to return the largest sum
    // of 2 n-digit numbers
    static int largestSum(int n)
    {
        return (2 * ((int)Math.Pow(10, n) - 1));
    }
 
    // Driver code
    public static void Main()
    {
        int n = 4;
        Console.WriteLine("Largest = " + largestSum(n));
        Console.Write("Smallest = " + smallestSum(n));
    }
}

PHP

<?php
// PHP implementation of the approach
 
// Function to return the smallest sum
// of 2 n-digit numbers
function smallestSum($n)
{
    if ($n == 1)
        return 0;
    return (2 * pow(10, $n - 1));
}
  
// Function to return the largest sum
// of 2 n-digit numbers
function largestSum($n)
{
    return 2 * ( pow(10, $n) - 1 );
}
 
// Driver code
$n = 4;
echo "Largest = " . largestSum($n) . "\n";
echo "Smallest = " . smallestSum($n);
?>

Javascript

<script>
 
// Javascript implementation of the approach
 
// Function to return the smallest sum
// of 2 n-digit numbers
function smallestSum(n)
{
    if (n == 1)
        return 0;
    return (2 * Math.pow(10, n - 1));
}
 
// Function to return the largest sum
// of 2 n-digit numbers
function largestSum(n)
{
    return (2 * (Math.pow(10, n) - 1));
}
 
// Driver code
var n = 4;
document.write("Largest = " + largestSum(n) + "<br>");
document.write("Smallest = " + smallestSum(n));
 
// This code is contributed by noob2000.
</script>
Producción: 

Largest = 19998
Smallest = 2000

 

Complejidad de tiempo: O (log n)

Espacio Auxiliar: O(1)

Publicación traducida automáticamente

Artículo escrito por spp____ y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *