Dada una array arr[] de N enteros positivos. La tarea es encontrar el número de pares cuyo valor AND bit a bit es una potencia de 2.
Ejemplos:
Entrada: arr[] = {2, 1, 3, 4}
Salida: 2
Explicación:
Hay 2 pares (2, 3) y (1, 3) en esta array cuyos valores AND bit a bit son:
1. (2 y 3 ) = 1 = (2 0 )
2. (1 y 3) = 1 = (2 0 ).
Entrada: arr[] = {6, 4, 2, 3}
Salida: 4
Explicación:
Hay 4 pares (6, 4), (6, 2), (6, 3), (2, 3) cuyo bit a bit y es potencia de 2
Enfoque: para cada par posible en la array dada, la idea de verificar si Bitwise AND de cada par de elementos es potencia perfecta de 2 o no. Si la respuesta es «Sí» , cuente este par. De lo contrario, verifique el próximo par.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to check if x is power of 2 bool check(int x) { // Returns true if x is a power of 2 return x && (!(x & (x - 1))); } // Function to return the // number of valid pairs int count(int arr[], int n) { int cnt = 0; // Iterate for all possible pairs for (int i = 0; i < n - 1; i++) { for (int j = i + 1; j < n; j++) { // Bitwise and value of // the pair is passed if (check(arr[i] & arr[j])) cnt++; } } // Return the final count return cnt; } // Driver Code int main() { // Given array int arr[] = { 6, 4, 2, 3 }; int n = sizeof(arr) / sizeof(arr[0]); // Function Call cout << count(arr, n); return 0; }
Java
// Java program for the above approach class GFG{ // Method to check if x is power of 2 static boolean check(int x) { // First x in the below expression // is for the case when x is 0 return x != 0 && ((x & (x - 1)) == 0); } // Function to return the // number of valid pairs static int count(int arr[], int n) { int cnt = 0; // Iterate for all possible pairs for(int i = 0; i < n - 1; i++) { for(int j = i + 1; j < n; j++) { // Bitwise and value of // the pair is passed if (check(arr[i] & arr[j])) cnt++; } } // Return the final count return cnt; } // Driver Code public static void main(String[] args) { // Given array arr[] int arr[] = new int[]{ 6, 4, 2, 3 }; int n = arr.length; // Function call System.out.print(count(arr, n)); } } // This code is contributed by Pratima Pandey
Python3
# Python3 program for the above approach # Function to check if x is power of 2 def check(x): # Returns true if x is a power of 2 return x and (not(x & (x - 1))) # Function to return the # number of valid pairs def count(arr, n): cnt = 0 # Iterate for all possible pairs for i in range(n - 1): for j in range(i + 1, n): # Bitwise and value of # the pair is passed if check(arr[i] & arr[j]): cnt = cnt + 1 # Return the final count return cnt # Given array arr = [ 6, 4, 2, 3 ] n = len(arr) # Function Call print(count(arr, n)) # This code is contributed by divyeshrabadiya07
C#
// C# program for the above approach using System; class GFG{ // Method to check if x is power of 2 static bool check(int x) { // First x in the below expression // is for the case when x is 0 return x != 0 && ((x & (x - 1)) == 0); } // Function to return the // number of valid pairs static int count(int []arr, int n) { int cnt = 0; // Iterate for all possible pairs for(int i = 0; i < n - 1; i++) { for(int j = i + 1; j < n; j++) { // Bitwise and value of // the pair is passed if (check(arr[i] & arr[j])) cnt++; } } // Return the final count return cnt; } // Driver Code public static void Main() { // Given array arr[] int []arr = new int[]{ 6, 4, 2, 3 }; int n = arr.Length; // Function call Console.Write(count(arr, n)); } } // This code is contributed by Code_Mech
Javascript
<script> // JavaScript program to implement // the above approach // Method to check if x is power of 2 function check(x) { // First x in the below expression // is for the case when x is 0 return x != 0 && ((x & (x - 1)) == 0); } // Function to return the // number of valid pairs function count(arr, n) { let cnt = 0; // Iterate for all possible pairs for(let i = 0; i < n - 1; i++) { for(let j = i + 1; j < n; j++) { // Bitwise and value of // the pair is passed if (check(arr[i] & arr[j])) cnt++; } } // Return the final count return cnt; } // Driver code // Given array arr[] let arr = [ 6, 4, 2, 3 ]; let n = arr.length; // Function call document.write(count(arr, n)); // This code is contributed by susmitakundugoaldanga. </script>
4
Complejidad de Tiempo: O(N 2 )
Espacio Auxiliar: O(1)
Publicación traducida automáticamente
Artículo escrito por shauryarehangfg y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA