Dados tres dígitos distintos de cero 0 < A, B, C < 9 . La tarea es encontrar el número más pequeño divisible por 3 cuyos dígitos estén todos en el conjunto {A, B, C}.
Nota: No es necesario incluir los tres dígitos. El resultado puede ser A , AA , AB , CCA etc.
Ejemplos:
Entrada: A = 2, B = 4, C = 7
Salida: 24
24 es el número mínimo divisible por 3 que se puede formar con los dígitos dados.
Entrada: A = 1, B = 2, C = 3
Salida: 3
Enfoque: tome los tres números en una array y ordénelos en orden creciente. Ahora verifica si algún número es divisible por 3 , si es así , entonces el número será la respuesta.
Si no es así, vuelve a comprobarlo tomando cualquiera de los dos números. Finalmente tome el número más pequeño y nuestro resultado es este número repetido tres veces.
¿Por qué no podemos obtener una respuesta de más de tres dígitos?
Incluso si cualquier número no es divisible por 3, repetir el número más pequeño 3 veces lo hará divisible por 3. Tenga en cuenta que un número es divisible por 3 si la suma de sus dígitos es divisible por 3 .
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Function to return the minimum number // divisible by 3 formed by the given digits int printSmallest(int a[3]) { int sum, sum1; // Sort the given array in ascending sort(a, a + 3); int i, j, k, num; // Check if any single digit is divisible by 3 for (int i = 0; i < 3; i++) { if (a[i] % 3 == 0) return a[i]; } // Check if any two digit number formed by // the given digits is divisible by 3 // starting from the minimum for (i = 0; i < 3; i++) { for (j = 0; j < 3; j++) { // Generate the two digit number num = (a[i] * 10) + a[j]; if (num % 3 == 0) return num; } } // If none of the above is true, we can // form three digit number by taking a[0] // three times. return a[0]*100 + a[0]*10 + a[0]; } // Driver code int main() { int arr[] = { 7, 7, 1 }; cout << printSmallest(arr); return 0; }
Java
// Java implementation of the approach import java.util.Arrays; public class GFG { // Function to return the minimum number // divisible by 3 formed by the given digits static int printSmallest(int a[]) { int sum, sum1; // Sort the given array in ascending Arrays.sort(a); int i, j, k, num; // Check if any single digit is divisible by 3 for (i = 0; i < 3; i++) { if (a[i] % 3 == 0) { return a[i]; } } // Check if any two digit number formed by // the given digits is divisible by 3 // starting from the minimum for (i = 0; i < 3; i++) { for (j = 0; j < 3; j++) { // Generate the two digit number num = (a[i] * 10) + a[j]; if (num % 3 == 0) { return num; } } } // If none of the above is true, we can // form three digit number by taking a[0] // three times. return a[0] * 100 + a[0] * 10 + a[0]; } // Driver code public static void main(String[] args) { int arr[] = {7, 7, 1}; System.out.println(printSmallest(arr)); } } // This code is contributed by 29AjayKumar
Python3
# Python3 implementation of the approach # Function to return the minimum # number divisible by 3 formed by # the given digits def printSmallest(a, n): sum0, sum1 = 0, 0 # Sort the given array in ascending a = sorted(a) # Check if any single digit is # divisible by 3 for i in range(n): if (a[i] % 3 == 0): return a[i] # Check if any two digit number # formed by the given digits is # divisible by 3 starting from # the minimum for i in range(n): for j in range(n): # Generate the two digit number num = (a[i] * 10) + a[j] if (num % 3 == 0): return num # If none of the above is true, we can # form three digit number by taking a[0] # three times. return a[0] * 100 + a[0] * 10 + a[0] # Driver code arr = [7, 7, 1 ] n = len(arr) print(printSmallest(arr, n)) # This code is contributed # by mohit kumar 29
C#
// C# implementation of the approach using System; public class GFG { // Function to return the minimum number // divisible by 3 formed by the given digits static int printSmallest(int []a) { // Sort the given array in ascending Array.Sort(a); int i, j, num; // Check if any single digit is divisible by 3 for (i = 0; i < 3; i++) { if (a[i] % 3 == 0) { return a[i]; } } // Check if any two digit number formed by // the given digits is divisible by 3 // starting from the minimum for (i = 0; i < 3; i++) { for (j = 0; j < 3; j++) { // Generate the two digit number num = (a[i] * 10) + a[j]; if (num % 3 == 0) { return num; } } } // If none of the above is true, we can // form three digit number by taking a[0] // three times. return a[0] * 100 + a[0] * 10 + a[0]; } // Driver code public static void Main() { int []arr = {7, 7, 1}; Console.Write(printSmallest(arr)); } } //This code is contributed by Rajput-Ji
PHP
<?php // PHP implementation of the approach // Function to return the minimum number // divisible by 3 formed by the given digits function printSmallest($a) { // Sort the given array in ascending sort($a); // Check if any single digit // is divisible by 3 for ($i = 0; $i < 3; $i++) { if ($a[$i] % 3 == 0) return $a[$i]; } // Check if any two digit number formed // by the given digits is divisible by 3 // starting from the minimum for ($i = 0; $i < 3; $i++) { for ($j = 0; $j < 3; $j++) { // Generate the two digit number $num = ($a[$i] * 10) + $a[$j]; if ($num % 3 == 0) return $num; } } // If none of the above is true, we can // form three digit number by taking a[0] // three times. return $a[0] * 100 + $a[0] * 10 + $a[0]; } // Driver code $arr = array( 7, 7, 1 ); echo printSmallest($arr); // This code is contributed by Ryuga ?>
Javascript
<script> // JavaScript implementation of the approach // Function to return the minimum number // divisible by 3 formed by the given digits function printSmallest(a) { // Sort the given array in ascending a.sort(function(a, b){return a - b}); let i, j, num; // Check if any single digit is divisible by 3 for (i = 0; i < 3; i++) { if (a[i] % 3 == 0) { return a[i]; } } // Check if any two digit number formed by // the given digits is divisible by 3 // starting from the minimum for (i = 0; i < 3; i++) { for (j = 0; j < 3; j++) { // Generate the two digit number num = (a[i] * 10) + a[j]; if (num % 3 == 0) { return num; } } } // If none of the above is true, we can // form three digit number by taking a[0] // three times. return a[0] * 100 + a[0] * 10 + a[0]; } let arr = [7, 7, 1]; document.write(printSmallest(arr)); </script>
111
Complejidad de tiempo: O(1)
Espacio Auxiliar: O(1)
Publicación traducida automáticamente
Artículo escrito por Vivek.Pandit y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA