Dada una array arr[] de N enteros, la tarea es encontrar la suma de todos los pares posibles de la array dada. Tenga en cuenta que,
- (arr[i], arr[i]) también se considera un par válido.
- (arr[i], arr[j]) y (arr[j], arr[i]) se consideran dos pares diferentes.
Ejemplos:
Entrada: arr[] = {1, 2}
Salida: 12
Todos los pares válidos son (1, 1), (1, 2), (2, 1) y (2, 2).
1 + 1 + 1 + 2 + 2 + 1 + 2 + 2 = 12Entrada: arr[] = {1, 2, 3, 1, 4}
Salida: 110
Enfoque ingenuo: encuentre todos los pares posibles y calcule la suma de los elementos de cada par.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Function to return the sum of the elements // of all possible pairs from the array int sumPairs(int arr[], int n) { // To store the required sum int sum = 0; // Nested loop for all possible pairs for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { // Add the sum of the elements // of the current pair sum += (arr[i] + arr[j]); } } return sum; } // Driver code int main() { int arr[] = { 1, 2, 3 }; int n = sizeof(arr) / sizeof(arr[0]); cout << sumPairs(arr, n); return 0; }
Java
// Java implementation of the approach import java.util.*; class GFG { // Function to return the sum of the elements // of all possible pairs from the array static int sumPairs(int arr[], int n) { // To store the required sum int sum = 0; // Nested loop for all possible pairs for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { // Add the sum of the elements // of the current pair sum += (arr[i] + arr[j]); } } return sum; } // Driver code public static void main(String[] args) { int arr[] = {1, 2, 3}; int n = arr.length; System.out.println(sumPairs(arr, n)); } } // This code is contributed by PrinciRaj1992
Python3
# Python3 implementation of the approach # Function to return the summ of the elements # of all possible pairs from the array def summPairs(arr, n): # To store the required summ summ = 0 # Nested loop for all possible pairs for i in range(n): for j in range(n): # Add the summ of the elements # of the current pair summ += (arr[i] + arr[j]) return summ # Driver code arr = [1, 2, 3] n = len(arr) print(summPairs(arr, n)) # This code is contributed by Mohit Kumar
C#
// C# implementation of the approach using System; class GFG { // Function to return the sum of the elements // of all possible pairs from the array static int sumPairs(int []arr, int n) { // To store the required sum int sum = 0; // Nested loop for all possible pairs for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { // Add the sum of the elements // of the current pair sum += (arr[i] + arr[j]); } } return sum; } // Driver code public static void Main(String[] args) { int []arr = {1, 2, 3}; int n = arr.Length; Console.WriteLine(sumPairs(arr, n)); } } // This code is contributed by PrinciRaj1992
Javascript
<script> // Javascript implementation of the approach // Function to return the sum of the elements // of all possible pairs from the array function sumPairs(arr, n) { // To store the required sum var sum = 0; var i, j; // Nested loop for all possible pairs for(i = 0; i < n; i++) { for(j = 0; j < n; j++) { // Add the sum of the elements // of the current pair sum += (arr[i] + arr[j]); } } return sum; } // Driver code var arr = [ 1, 2, 3 ]; var n = arr.length; document.write(sumPairs(arr, n)); // This code is contributed by ipg2016107 </script>
36
Complejidad del tiempo: O(N 2 )
Espacio Auxiliar: O(1)
Enfoque eficiente: Se puede observar que cada elemento aparece exactamente (2*N) veces como uno de los elementos del par (x, y) . Exactamente N veces como x y exactamente N veces como y .
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Function to return the sum of the elements // of all possible pairs from the array int sumPairs(int arr[], int n) { // To store the required sum int sum = 0; // For every element of the array for (int i = 0; i < n; i++) { // It appears (2 * n) times sum = sum + (arr[i] * (2 * n)); } return sum; } // Driver code int main() { int arr[] = { 1, 2, 3 }; int n = sizeof(arr) / sizeof(arr[0]); cout << sumPairs(arr, n); return 0; }
Java
// Java implementation of the approach import java.util.*; class GFG { // Function to return the sum of the elements // of all possible pairs from the array static int sumPairs(int arr[], int n) { // To store the required sum int sum = 0; // For every element of the array for (int i = 0; i < n; i++) { // It appears (2 * n) times sum = sum + (arr[i] * (2 * n)); } return sum; } // Driver code static public void main(String []arg) { int arr[] = { 1, 2, 3 }; int n = arr.length; System.out.println(sumPairs(arr, n)); } } // This code is contributed by 29AjayKumar
Python3
# Python3 implementation of the approach # Function to return the sum of the elements # of all possible pairs from the array def sumPairs(arr, n) : # To store the required sum sum = 0; # For every element of the array for i in range(n) : # It appears (2 * n) times sum = sum + (arr[i] * (2 * n)); return sum; # Driver code if __name__ == "__main__" : arr = [ 1, 2, 3 ]; n = len(arr); print(sumPairs(arr, n)); # This code is contributed by AnkitRai01
C#
// C# implementation of the approach using System; class GFG { // Function to return the sum of the elements // of all possible pairs from the array static int sumPairs(int []arr, int n) { // To store the required sum int sum = 0; // For every element of the array for (int i = 0; i < n; i++) { // It appears (2 * n) times sum = sum + (arr[i] * (2 * n)); } return sum; } // Driver code static public void Main(String []arg) { int []arr = { 1, 2, 3 }; int n = arr.Length; Console.WriteLine(sumPairs(arr, n)); } } // This code contributed by Rajput-Ji
Javascript
<script> // Javascript implementation of the approach // Function to return the sum of the elements // of all possible pairs from the array function sumPairs(arr, n) { // To store the required sum let sum = 0; // For every element of the array for (let i = 0; i < n; i++) { // It appears (2 * n) times sum = sum + (arr[i] * (2 * n)); } return sum; } // Driver code let arr = [ 1, 2, 3 ]; let n = arr.length; document.write(sumPairs(arr, n)); </script>
36
Complejidad temporal: O(N)
Espacio auxiliar: O(1)
Publicación traducida automáticamente
Artículo escrito por charlie_04 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA