Cuente los números que pueden convertir N a 1 usando la operación dada

Dado un entero positivo N (N ≥ 2) , la tarea es contar el número de enteros X en el rango [2, N] de modo que X pueda usarse para convertir N en 1 usando la siguiente operación:

  • Si N es divisible por X , actualice el valor de N como N / X .
  • De lo contrario, actualice el valor de N como N – X.

Ejemplos:

Entrada: N = 6 
Salida:
Explicación: 
Los siguientes números enteros pueden usarse para convertir N a 1: 
X = 2 => N = 6 -> N = 3 -> N = 1 
X = 5 => N = 6 -> norte = 1 
X = 6 => norte = 6 -> norte = 1

Entrada: N = 48 
Salida: 4

Enfoque ingenuo: el enfoque ingenuo para este problema es iterar a través de todos los enteros de 2 a N y contar el número de enteros que pueden convertir N en 1.

A continuación se muestra la implementación del enfoque anterior:

C++

// C++ program to count the numbers
// which can convert N to 1
// using the given operation
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to count the numbers
// which can convert N to 1
// using the given operation
int countValues(int n)
{
 
    int answer = 0;
 
    // Iterate through all the integers
    for (int i = 2; i <= n; i++) {
        int k = n;
 
        // Check if N can be converted
        // to 1
        while (k >= i) {
            if (k % i == 0)
                k /= i;
            else
                k -= i;
        }
 
        // Incrementing the count if it can
        // be converted
        if (k == 1)
            answer++;
    }
    return answer;
}
 
// Driver code
int main()
{
    int N = 6;
 
    cout << countValues(N);
 
    return 0;
}

Java

// Java program to count the numbers
// which can convert N to 1
// using the given operation
import java.io.*;
import java.util.*;
class GFG{
     
// Function to count the numbers
// which can convert N to 1
// using the given operation
static int countValues(int n)
{
    int answer = 0;
 
    // Iterate through all the integers
    for (int i = 2; i <= n; i++)
    {
        int k = n;
 
        // Check if N can be converted
        // to 1
        while (k >= i)
        {
            if (k % i == 0)
                k /= i;
            else
                k -= i;
        }
 
        // Incrementing the count if it can
        // be converted
        if (k == 1)
            answer++;
    }
    return answer;
}
 
// Driver code
public static void main(String args[])
{
    int N = 6;
 
    System.out.print(countValues(N));
}
}
 
// This code is contributed by shivanisinghss2110

Python3

# Python3 program to count the numbers
# which can convert N to 1
# using the given operation
 
# Function to count the numbers
# which can convert N to 1
# using the given operation
def countValues(n):
    answer = 0
 
    # Iterate through all the integers
    for i in range(2, n + 1, 1):
        k = n
 
        # Check if N can be converted
        # to 1
        while (k >= i):
            if (k % i == 0):
                k //= i
            else:
                k -= i
 
        # Incrementing the count if it can
        # be converted
        if (k == 1):
            answer += 1
    return answer
 
# Driver code
if __name__ == '__main__':
     
    N = 6
    print(countValues(N))
 
# This code is contributed by Samarth

C#

// C# program to count the numbers
// which can convert N to 1
// using the given operation
using System;
class GFG{
     
// Function to count the numbers
// which can convert N to 1
// using the given operation
static int countValues(int n)
{
    int answer = 0;
 
    // Iterate through all the integers
    for (int i = 2; i <= n; i++)
    {
        int k = n;
 
        // Check if N can be converted
        // to 1
        while (k >= i)
        {
            if (k % i == 0)
                k /= i;
            else
                k -= i;
        }
 
        // Incrementing the count if it can
        // be converted
        if (k == 1)
            answer++;
    }
    return answer;
}
 
// Driver code
public static void Main()
{
    int N = 6;
 
    Console.Write(countValues(N));
}
}
 
// This code is contributed by Nidhi_biet

Javascript

<script>
 
    // Javascript program to count the numbers
    // which can convert N to 1
    // using the given operation
     
    // Function to count the numbers
    // which can convert N to 1
    // using the given operation
    function countValues(n)
    {
 
        let answer = 0;
 
        // Iterate through all the integers
        for (let i = 2; i <= n; i++) {
            let k = n;
 
            // Check if N can be converted
            // to 1
            while (k >= i) {
                if (k % i == 0)
                    k /= i;
                else
                    k -= i;
            }
 
            // Incrementing the count if it can
            // be converted
            if (k == 1)
                answer++;
        }
        return answer;
    }
     
    let N = 6;
  
    document.write(countValues(N));
     
</script>
Producción: 

3

Complejidad de tiempo: O(N) , donde N es el número dado.

Espacio Auxiliar: O(1)

Enfoque eficiente: la idea es observar que si N no es divisible por X inicialmente, entonces solo se llevará a cabo la resta ya que después de cada resta N aún no sería divisible por N. Además, estas operaciones se detendrán cuando N ≤ X, y el valor final de N será igual a N mod X .

Entonces, para todos los números del 2 al N, solo hay dos casos posibles:

  1. No ocurre ninguna operación de división: para todos estos números, el valor final será igual a N mod X. N se convertirá en uno al final solo si N mod X = 1. Claramente, para X = N – 1, y todos los divisores de N – 1, N mod X = 1 es cierto.
  2. La operación de división ocurre más de una vez: La operación de división solo ocurrirá para divisores en N. Para cada divisor de N, digamos d, realice la división hasta que N mod d != 0. Si finalmente N mod d = 1, entonces esto se incluirá en la respuesta sino no (usando la propiedad derivada del Caso 1).

A continuación se muestra la implementación del enfoque anterior:

C++

// C++ program to count the numbers
// which can convert N to 1
// using the given operation
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to count the numbers
// which can convert N to 1
// using the given operation
int countValues(int N)
{
 
    vector<int> div;
 
    // Store all the divisors of N
    for (int i = 2; i * i <= N; i++) {
 
        // If i is a divisor
        if (N % i == 0) {
            div.push_back(i);
 
            // If i is not equal to N / i
            if (N != i * i) {
                div.push_back(N / i);
            }
        }
    }
 
    int answer = 0;
 
    // Iterate through all the divisors of
    // N - 1 and count them in answer
    for (int i = 1; i * i <= N - 1; i++) {
 
        // Check if N - 1 is a divisor
        // or not
        if ((N - 1) % i == 0) {
            if (i * i == N - 1)
                answer++;
            else
                answer += 2;
        }
    }
 
    // Iterate through all divisors and check
    // for N mod d = 1 or (N-1) mod d = 0
    for (auto d : div) {
        int K = N;
        while (K % d == 0)
            K /= d;
        if ((K - 1) % d == 0)
            answer++;
    }
    return answer;
}
 
// Driver code
int main()
{
    int N = 6;
 
    cout << countValues(N);
 
    return 0;
}

Java

// Java program to count the numbers
// which can convert N to 1
// using the given operation
import java.util.*;
 
class GFG{
 
// Function to count the numbers
// which can convert N to 1
// using the given operation
static int countValues(int N)
{
    Vector<Integer> div = new Vector<>();
 
    // Store all the divisors of N
    for(int i = 2; i * i <= N; i++)
    {
         
        // If i is a divisor
        if (N % i == 0)
        {
            div.add(i);
 
            // If i is not equal to N / i
            if (N != i * i)
            {
                div.add(N / i);
            }
        }
    }
 
    int answer = 0;
 
    // Iterate through all the divisors of
    // N - 1 and count them in answer
    for(int i = 1; i * i <= N - 1; i++)
    {
         
        // Check if N - 1 is a divisor
        // or not
        if ((N - 1) % i == 0)
        {
            if (i * i == N - 1)
                answer++;
            else
                answer += 2;
        }
    }
 
    // Iterate through all divisors and check
    // for N mod d = 1 or (N-1) mod d = 0
    for(int d : div)
    {
        int K = N;
        while (K % d == 0)
            K /= d;
             
        if ((K - 1) % d == 0)
            answer++;
    }
    return answer;
}
 
// Driver code
public static void main(String[] args)
{
    int N = 6;
 
    System.out.print(countValues(N));
}
}
 
// This code is contributed by gauravrajput1

Python3

# Python3 program to count the numbers
# which can convert N to 1
# using the given operation
 
# Function to count the numbers
# which can convert N to 1
# using the given operation
def countValues(N):
     
    div = []
    i = 2
     
    # Store all the divisors of N
    while ((i * i) <= N):
         
        # If i is a divisor
        if (N % i == 0):
            div.append(i)
  
            # If i is not equal to N / i
            if (N != i * i):
                div.append(N // i)
                 
        i += 1 
         
    answer = 0
    i = 1
     
    # Iterate through all the divisors of
    # N - 1 and count them in answer
    while((i * i) <= N - 1):
  
        # Check if N - 1 is a divisor
        # or not
        if ((N - 1) % i == 0):
            if (i * i == N - 1):
                answer += 1
            else:
                answer += 2
                 
        i += 1
  
    # Iterate through all divisors and check
    # for N mod d = 1 or (N-1) mod d = 0
    for d in div:
        K = N
         
        while (K % d == 0):
            K //= d
        if ((K - 1) % d == 0):
            answer += 1
     
    return answer
 
# Driver code
if __name__=="__main__":
     
    N = 6
  
    print(countValues(N))
 
# This code is contributed by rutvik_56

C#

// C# program to count the numbers
// which can convert N to 1
// using the given operation
using System;
using System.Collections.Generic;
 
class GFG{
 
// Function to count the numbers
// which can convert N to 1
// using the given operation
static int countValues(int N)
{
    List<int> div = new List<int>();
 
    // Store all the divisors of N
    for(int i = 2; i * i <= N; i++)
    {
         
        // If i is a divisor
        if (N % i == 0)
        {
            div.Add(i);
 
            // If i is not equal to N / i
            if (N != i * i)
            {
                div.Add(N / i);
            }
        }
    }
 
    int answer = 0;
 
    // Iterate through all the divisors of
    // N - 1 and count them in answer
    for(int i = 1; i * i <= N - 1; i++)
    {
         
        // Check if N - 1 is a divisor
        // or not
        if ((N - 1) % i == 0)
        {
            if (i * i == N - 1)
                answer++;
            else
                answer += 2;
        }
    }
 
    // Iterate through all divisors and check
    // for N mod d = 1 or (N-1) mod d = 0
    foreach(int d in div)
    {
        int K = N;
        while (K % d == 0)
            K /= d;
             
        if ((K - 1) % d == 0)
            answer++;
    }
    return answer;
}
 
// Driver code
public static void Main(String[] args)
{
    int N = 6;
 
    Console.Write(countValues(N));
}
}
 
// This code is contributed by Amit Katiyar

Javascript

<script>
 
// JavaScript program to count the numbers
// which can convert N to 1
// using the given operation
 
// Function to count the numbers
// which can convert N to 1
// using the given operation
function countValues(N)
{
 
    var div = [];
 
    // Store all the divisors of N
    for (var i = 2; i * i <= N; i++) {
 
        // If i is a divisor
        if (N % i == 0) {
            div.push(i);
 
            // If i is not equal to N / i
            if (N != i * i) {
                div.push(N / i);
            }
        }
    }
 
    var answer = 0;
 
    // Iterate through all the divisors of
    // N - 1 and count them in answer
    for (var i = 1; i * i <= N - 1; i++) {
 
        // Check if N - 1 is a divisor
        // or not
        if ((N - 1) % i == 0) {
            if (i * i == N - 1)
                answer++;
            else
                answer += 2;
        }
    }
 
    // Iterate through all divisors and check
    // for N mod d = 1 or (N-1) mod d = 0
    div.forEach(d => {
    
        var K = N;
        while (K % d == 0)
            K /= d;
        if ((K - 1) % d == 0)
            answer++;
    });
    return answer;
}
 
// Driver code
var N = 6;
document.write( countValues(N));
 
 
</script>
Producción: 

3

Complejidad del tiempo: 

O(\sqrt{N})

Espacio auxiliar: O(sqrt(N))
 

Publicación traducida automáticamente

Artículo escrito por king_tsar y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *