Dados cuatro enteros A , B , C y K . Suponga que todos los múltiplos de A , B y C están almacenados en un conjunto en orden ordenado sin duplicados, ahora la tarea es encontrar el K -ésimo elemento de ese conjunto.
Ejemplos:
Entrada: A = 1, B = 2, C = 3, K = 4
Salida: 4
El conjunto requerido es {1, 2, 3, 4, 5, …}
Entrada: A = 2, B = 4, C = 5 , K = 5
Salida: 8
Enfoque: La búsqueda binaria se puede utilizar aquí en K para encontrar el número K en el conjunto. Encontremos el K -ésimo número si este fuera un múltiplo de A.
Aplique la búsqueda binaria en los múltiplos de A , comenzando desde 1 hasta K (ya que puede haber K múltiplos máximos de A para encontrar el número K en el conjunto requerido).
Ahora, para un valor mid , el múltiplo requerido de A será A * mid (digamos X) . Ahora la tarea es encontrar si este es elK -ésimo número del conjunto requerido. Se puede encontrar como se muestra a continuación:
Hallar el número de múltiplos de A menor que X , digamos A1
Hallar el número de múltiplos de B menor que X , digamos B1
Hallar el número de múltiplos de C menor que X , digamos C1
Hallar el número de múltiplos de mcm(A, B) (Divisible por A y B) menor que X diga AB1
Halle el número de múltiplos de mcm(B, C) menor que X diga BC1
Halle el número de múltiplos de mcm(C, A) menor que X diga CA1
Encuentra el número de múltiplos de mcm(A, B, C) menos que X , digamos ABC1
Ahora, el conteo de números en el conjunto requerido menor que X será A1 + B1 + C1 – AB1 – BC1 – CA1 + ABC1 por el principio de Inclusión y Exclusión .
Si cuenta = K – 1 , entonces X es la respuesta requerida.
Si cuenta < K – 1, entonces ese múltiplo es mayor que X implica establecer inicio = medio + 1 , de lo contrario establecer final = medio – 1 .
Realice los mismos pasos (si el número K no es un múltiplo de A ) para B y luego para C.
Desde el KthEl número está destinado a ser un múltiplo de A , B o C , estas tres búsquedas binarias definitivamente devolverán el resultado.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ implementation of the approach #include <bits/stdc++.h> #define ll long long int using namespace std; // Function to return the // GCD of A and B int gcd(int A, int B) { if (B == 0) return A; return gcd(B, A % B); } // Function to return the // LCM of A and B int lcm(int A, int B) { return (A * B) / gcd(A, B); } // Function to return the Kth element from // the required set if it a multiple of A int checkA(int A, int B, int C, int K) { // Start and End for Binary Search int start = 1; int end = K; // If no answer found return -1 int ans = -1; while (start <= end) { int mid = (start + end) / 2; int value = A * mid; int divA = mid - 1; int divB = (value % B == 0) ? value / B - 1 : value / B; int divC = (value % C == 0) ? value / C - 1 : value / C; int divAB = (value % lcm(A, B) == 0) ? value / lcm(A, B) - 1 : value / lcm(A, B); int divBC = (value % lcm(C, B) == 0) ? value / lcm(C, B) - 1 : value / lcm(C, B); int divAC = (value % lcm(A, C) == 0) ? value / lcm(A, C) - 1 : value / lcm(A, C); int divABC = (value % lcm(A, lcm(B, C)) == 0) ? value / lcm(A, lcm(B, C)) - 1 : value / lcm(A, lcm(B, C)); // Inclusion and Exclusion int elem = divA + divB + divC - divAC - divBC - divAB + divABC; if (elem == (K - 1)) { ans = value; break; } // Multiple should be smaller else if (elem > (K - 1)) { end = mid - 1; } // Multiple should be bigger else { start = mid + 1; } } return ans; } // Function to return the Kth element from // the required set if it a multiple of B int checkB(int A, int B, int C, int K) { // Start and End for Binary Search int start = 1; int end = K; // If no answer found return -1 int ans = -1; while (start <= end) { int mid = (start + end) / 2; int value = B * mid; int divB = mid - 1; int divA = (value % A == 0) ? value / A - 1 : value / A; int divC = (value % C == 0) ? value / C - 1 : value / C; int divAB = (value % lcm(A, B) == 0) ? value / lcm(A, B) - 1 : value / lcm(A, B); int divBC = (value % lcm(C, B) == 0) ? value / lcm(C, B) - 1 : value / lcm(C, B); int divAC = (value % lcm(A, C) == 0) ? value / lcm(A, C) - 1 : value / lcm(A, C); int divABC = (value % lcm(A, lcm(B, C)) == 0) ? value / lcm(A, lcm(B, C)) - 1 : value / lcm(A, lcm(B, C)); // Inclusion and Exclusion int elem = divA + divB + divC - divAC - divBC - divAB + divABC; if (elem == (K - 1)) { ans = value; break; } // Multiple should be smaller else if (elem > (K - 1)) { end = mid - 1; } // Multiple should be bigger else { start = mid + 1; } } return ans; } // Function to return the Kth element from // the required set if it a multiple of C int checkC(int A, int B, int C, int K) { // Start and End for Binary Search int start = 1; int end = K; // If no answer found return -1 int ans = -1; while (start <= end) { int mid = (start + end) / 2; int value = C * mid; int divC = mid - 1; int divB = (value % B == 0) ? value / B - 1 : value / B; int divA = (value % A == 0) ? value / A - 1 : value / A; int divAB = (value % lcm(A, B) == 0) ? value / lcm(A, B) - 1 : value / lcm(A, B); int divBC = (value % lcm(C, B) == 0) ? value / lcm(C, B) - 1 : value / lcm(C, B); int divAC = (value % lcm(A, C) == 0) ? value / lcm(A, C) - 1 : value / lcm(A, C); int divABC = (value % lcm(A, lcm(B, C)) == 0) ? value / lcm(A, lcm(B, C)) - 1 : value / lcm(A, lcm(B, C)); // Inclusion and Exclusion int elem = divA + divB + divC - divAC - divBC - divAB + divABC; if (elem == (K - 1)) { ans = value; break; } // Multiple should be smaller else if (elem > (K - 1)) { end = mid - 1; } // Multiple should be bigger else { start = mid + 1; } } return ans; } // Function to return the Kth element from // the set of multiples of A, B and C int findKthMultiple(int A, int B, int C, int K) { // Apply binary search on the multiples of A int res = checkA(A, B, C, K); // If the required element is not a // multiple of A then the multiples // of B and C need to be checked if (res == -1) res = checkB(A, B, C, K); // If the required element is neither // a multiple of A nor a multiple // of B then the multiples of C // need to be checked if (res == -1) res = checkC(A, B, C, K); return res; } // Driver code int main() { int A = 2, B = 4, C = 5, K = 5; cout << findKthMultiple(A, B, C, K); return 0; }
Java
// Java implementation of the above approach class GFG { // Function to return the // GCD of A and B static int gcd(int A, int B) { if (B == 0) return A; return gcd(B, A % B); } // Function to return the // LCM of A and B static int lcm(int A, int B) { return (A * B) / gcd(A, B); } // Function to return the Kth element from // the required set if it a multiple of A static int checkA(int A, int B, int C, int K) { // Start and End for Binary Search int start = 1; int end = K; // If no answer found return -1 int ans = -1; while (start <= end) { int mid = (start + end) / 2; int value = A * mid; int divA = mid - 1; int divB = (value % B == 0) ? value / B - 1 : value / B; int divC = (value % C == 0) ? value / C - 1 : value / C; int divAB = (value % lcm(A, B) == 0) ? value / lcm(A, B) - 1 : value / lcm(A, B); int divBC = (value % lcm(C, B) == 0) ? value / lcm(C, B) - 1 : value / lcm(C, B); int divAC = (value % lcm(A, C) == 0) ? value / lcm(A, C) - 1 : value / lcm(A, C); int divABC = (value % lcm(A, lcm(B, C)) == 0) ? value / lcm(A, lcm(B, C)) - 1 : value / lcm(A, lcm(B, C)); // Inclusion and Exclusion int elem = divA + divB + divC - divAC - divBC - divAB + divABC; if (elem == (K - 1)) { ans = value; break; } // Multiple should be smaller else if (elem > (K - 1)) { end = mid - 1; } // Multiple should be bigger else { start = mid + 1; } } return ans; } // Function to return the Kth element from // the required set if it a multiple of B static int checkB(int A, int B, int C, int K) { // Start and End for Binary Search int start = 1; int end = K; // If no answer found return -1 int ans = -1; while (start <= end) { int mid = (start + end) / 2; int value = B * mid; int divB = mid - 1; int divA = (value % A == 0) ? value / A - 1 : value / A; int divC = (value % C == 0) ? value / C - 1 : value / C; int divAB = (value % lcm(A, B) == 0) ? value / lcm(A, B) - 1 : value / lcm(A, B); int divBC = (value % lcm(C, B) == 0) ? value / lcm(C, B) - 1 : value / lcm(C, B); int divAC = (value % lcm(A, C) == 0) ? value / lcm(A, C) - 1 : value / lcm(A, C); int divABC = (value % lcm(A, lcm(B, C)) == 0) ? value / lcm(A, lcm(B, C)) - 1 : value / lcm(A, lcm(B, C)); // Inclusion and Exclusion int elem = divA + divB + divC - divAC - divBC - divAB + divABC; if (elem == (K - 1)) { ans = value; break; } // Multiple should be smaller else if (elem > (K - 1)) { end = mid - 1; } // Multiple should be bigger else { start = mid + 1; } } return ans; } // Function to return the Kth element from // the required set if it a multiple of C static int checkC(int A, int B, int C, int K) { // Start and End for Binary Search int start = 1; int end = K; // If no answer found return -1 int ans = -1; while (start <= end) { int mid = (start + end) / 2; int value = C * mid; int divC = mid - 1; int divB = (value % B == 0) ? value / B - 1 : value / B; int divA = (value % A == 0) ? value / A - 1 : value / A; int divAB = (value % lcm(A, B) == 0) ? value / lcm(A, B) - 1 : value / lcm(A, B); int divBC = (value % lcm(C, B) == 0) ? value / lcm(C, B) - 1 : value / lcm(C, B); int divAC = (value % lcm(A, C) == 0) ? value / lcm(A, C) - 1 : value / lcm(A, C); int divABC = (value % lcm(A, lcm(B, C)) == 0) ? value / lcm(A, lcm(B, C)) - 1 : value / lcm(A, lcm(B, C)); // Inclusion and Exclusion int elem = divA + divB + divC - divAC - divBC - divAB + divABC; if (elem == (K - 1)) { ans = value; break; } // Multiple should be smaller else if (elem > (K - 1)) { end = mid - 1; } // Multiple should be bigger else { start = mid + 1; } } return ans; } // Function to return the Kth element from // the set of multiples of A, B and C static int findKthMultiple(int A, int B, int C, int K) { // Apply binary search on the multiples of A int res = checkA(A, B, C, K); // If the required element is not a // multiple of A then the multiples // of B and C need to be checked if (res == -1) res = checkB(A, B, C, K); // If the required element is neither // a multiple of A nor a multiple // of B then the multiples of C // need to be checked if (res == -1) res = checkC(A, B, C, K); return res; } // Driver code public static void main(String args[]) { int A = 2, B = 4, C = 5, K = 5; System.out.println(findKthMultiple(A, B, C, K)); } } // This code is contributed by AnkitRai01
Python3
# Python3 implementation of the approach # Function to return the GCD of A and B def gcd(A, B): if (B == 0): return A return gcd(B, A % B) # Function to return the # LCM of A and B def lcm(A, B): return (A * B) // gcd(A, B) # Function to return the Kth element from # the required set if it a multiple of A def checkA(A, B, C, K): # Start and End for Binary Search start = 1 end = K # If no answer found return -1 ans = -1 while (start <= end): mid = (start + end) // 2 value = A * mid divA = mid - 1 divB = value // B - 1 if (value % B == 0) \ else value // B divC = value // C - 1 if (value % C == 0) \ else value // C divAB = value // lcm(A, B) - 1 \ if (value % lcm(A, B) == 0) \ else value // lcm(A, B) divBC = value // lcm(C, B) - 1 \ if (value % lcm(C, B) == 0) \ else value // lcm(C, B) divAC = value // lcm(A, C) - 1 \ if (value % lcm(A, C) == 0) \ else value // lcm(A, C) divABC = value // lcm(A, lcm(B, C)) - 1 \ if (value % lcm(A, lcm(B, C)) == 0) \ else value // lcm(A, lcm(B, C)) # Inclusion and Exclusion elem = divA + divB + divC - \ divAC - divBC - divAB + divABC if (elem == (K - 1)): ans = value break # Multiple should be smaller elif (elem > (K - 1)): end = mid - 1 # Multiple should be bigger else : start = mid + 1 return ans # Function to return the Kth element from # the required set if it a multiple of B def checkB(A, B, C, K): # Start and End for Binary Search start = 1 end = K # If no answer found return -1 ans = -1 while (start <= end): mid = (start + end) // 2 value = B * mid divB = mid - 1 if (value % A == 0): divA = value // A - 1 else: value // A if (value % C == 0): divC = value // C - 1 else: value // C if (value % lcm(A, B) == 0): divAB = value // lcm(A, B) -1 else: value // lcm(A, B) if (value % lcm(C, B) == 0): divBC = value // lcm(C, B) -1 else: value // lcm(C, B) if (value % lcm(A, C) == 0): divAC = value // lcm(A, C) -1 else: value // lcm(A, C) if (value % lcm(A, lcm(B, C)) == 0): divABC = value // lcm(A, lcm(B, C)) - 1 else: value // lcm(A, lcm(B, C)) # Inclusion and Exclusion elem = divA + divB + divC - \ divAC - divBC - divAB + divABC if (elem == (K - 1)): ans = value break # Multiple should be smaller elif (elem > (K - 1)): end = mid - 1 # Multiple should be bigger else : start = mid + 1 return ans # Function to return the Kth element from # the required set if it a multiple of C def checkC(A, B, C, K): # Start and End for Binary Search start = 1 end = K # If no answer found return -1 ans = -1 while (start <= end): mid = (start + end) // 2 value = C * mid divC = mid - 1 if (value % B == 0): divB = value // B - 1 else: value // B if (value % A == 0): divA = value // A - 1 else: value // A if (value % lcm(A, B) == 0): divAB = value // lcm(A, B) -1 else: value // lcm(A, B) if (value % lcm(C, B) == 0): divBC = value // lcm(C, B) -1 else: value // lcm(C, B) if (value % lcm(A, C) == 0): divAC = value // lcm(A, C) -1 else: value // lcm(A, C) if (value % lcm(A, lcm(B, C)) == 0): divABC = value // lcm(A, lcm(B, C)) - 1 else: value // lcm(A, lcm(B, C)) # Inclusion and Exclusion elem = divA + divB + divC - \ divAC - divBC - divAB + divABC if (elem == (K - 1)): ans = value break # Multiple should be smaller elif (elem > (K - 1)): end = mid - 1 # Multiple should be bigger else : start = mid + 1 return ans # Function to return the Kth element from # the set of multiples of A, B and C def findKthMultiple(A, B, C, K): # Apply binary search on the multiples of A res = checkA(A, B, C, K) # If the required element is not a # multiple of A then the multiples # of B and C need to be checked if (res == -1): res = checkB(A, B, C, K) # If the required element is neither # a multiple of A nor a multiple # of B then the multiples of C # need to be checked if (res == -1): res = checkC(A, B, C, K) return res # Driver code A = 2 B = 4 C = 5 K = 5 print(findKthMultiple(A, B, C, K)) # This code is contributed by Mohit Kumar
C#
// C# implementation of the above approach using System; class GFG { // Function to return the // GCD of A and B static int gcd(int A, int B) { if (B == 0) return A; return gcd(B, A % B); } // Function to return the // LCM of A and B static int lcm(int A, int B) { return (A * B) / gcd(A, B); } // Function to return the Kth element from // the required set if it a multiple of A static int checkA(int A, int B, int C, int K) { // Start and End for Binary Search int start = 1; int end = K; // If no answer found return -1 int ans = -1; while (start <= end) { int mid = (start + end) / 2; int value = A * mid; int divA = mid - 1; int divB = (value % B == 0) ? value / B - 1 : value / B; int divC = (value % C == 0) ? value / C - 1 : value / C; int divAB = (value % lcm(A, B) == 0) ? value / lcm(A, B) - 1 : value / lcm(A, B); int divBC = (value % lcm(C, B) == 0) ? value / lcm(C, B) - 1 : value / lcm(C, B); int divAC = (value % lcm(A, C) == 0) ? value / lcm(A, C) - 1 : value / lcm(A, C); int divABC = (value % lcm(A, lcm(B, C)) == 0) ? value / lcm(A, lcm(B, C)) - 1 : value / lcm(A, lcm(B, C)); // Inclusion and Exclusion int elem = divA + divB + divC - divAC - divBC - divAB + divABC; if (elem == (K - 1)) { ans = value; break; } // Multiple should be smaller else if (elem > (K - 1)) { end = mid - 1; } // Multiple should be bigger else { start = mid + 1; } } return ans; } // Function to return the Kth element from // the required set if it a multiple of B static int checkB(int A, int B, int C, int K) { // Start and End for Binary Search int start = 1; int end = K; // If no answer found return -1 int ans = -1; while (start <= end) { int mid = (start + end) / 2; int value = B * mid; int divB = mid - 1; int divA = (value % A == 0) ? value / A - 1 : value / A; int divC = (value % C == 0) ? value / C - 1 : value / C; int divAB = (value % lcm(A, B) == 0) ? value / lcm(A, B) - 1 : value / lcm(A, B); int divBC = (value % lcm(C, B) == 0) ? value / lcm(C, B) - 1 : value / lcm(C, B); int divAC = (value % lcm(A, C) == 0) ? value / lcm(A, C) - 1 : value / lcm(A, C); int divABC = (value % lcm(A, lcm(B, C)) == 0) ? value / lcm(A, lcm(B, C)) - 1 : value / lcm(A, lcm(B, C)); // Inclusion and Exclusion int elem = divA + divB + divC - divAC - divBC - divAB + divABC; if (elem == (K - 1)) { ans = value; break; } // Multiple should be smaller else if (elem > (K - 1)) { end = mid - 1; } // Multiple should be bigger else { start = mid + 1; } } return ans; } // Function to return the Kth element from // the required set if it a multiple of C static int checkC(int A, int B, int C, int K) { // Start and End for Binary Search int start = 1; int end = K; // If no answer found return -1 int ans = -1; while (start <= end) { int mid = (start + end) / 2; int value = C * mid; int divC = mid - 1; int divB = (value % B == 0) ? value / B - 1 : value / B; int divA = (value % A == 0) ? value / A - 1 : value / A; int divAB = (value % lcm(A, B) == 0) ? value / lcm(A, B) - 1 : value / lcm(A, B); int divBC = (value % lcm(C, B) == 0) ? value / lcm(C, B) - 1 : value / lcm(C, B); int divAC = (value % lcm(A, C) == 0) ? value / lcm(A, C) - 1 : value / lcm(A, C); int divABC = (value % lcm(A, lcm(B, C)) == 0) ? value / lcm(A, lcm(B, C)) - 1 : value / lcm(A, lcm(B, C)); // Inclusion and Exclusion int elem = divA + divB + divC - divAC - divBC - divAB + divABC; if (elem == (K - 1)) { ans = value; break; } // Multiple should be smaller else if (elem > (K - 1)) { end = mid - 1; } // Multiple should be bigger else { start = mid + 1; } } return ans; } // Function to return the Kth element from // the set of multiples of A, B and C static int findKthMultiple(int A, int B, int C, int K) { // Apply binary search on the multiples of A int res = checkA(A, B, C, K); // If the required element is not a // multiple of A then the multiples // of B and C need to be checked if (res == -1) res = checkB(A, B, C, K); // If the required element is neither // a multiple of A nor a multiple // of B then the multiples of C // need to be checked if (res == -1) res = checkC(A, B, C, K); return res; } // Driver code public static void Main(String []args) { int A = 2, B = 4, C = 5, K = 5; Console.WriteLine(findKthMultiple(A, B, C, K)); } } // This code is contributed by Arnab Kundu
Javascript
<script> // JavaScript implementation of the above approach // Function to return the // GCD of A and B function gcd(A, B) { if (B === 0) return A; return gcd(B, A % B); } // Function to return the // LCM of A and B function lcm(A, B) { return (A * B) / gcd(A, B); } // Function to return the Kth element from // the required set if it a multiple of A function checkA(A, B, C, K) { // Start and End for Binary Search var start = 1; var end = K; // If no answer found return -1 var ans = -1; while (start <= end) { var mid = parseInt((start + end) / 2); var value = A * mid; var divA = mid - 1; var divB = parseInt(value % B === 0 ? value / B - 1 : value / B); var divC = parseInt(value % C === 0 ? value / C - 1 : value / C); var divAB = parseInt( value % lcm(A, B) === 0 ? value / lcm(A, B) - 1 : value / lcm(A, B) ); var divBC = parseInt( value % lcm(C, B) === 0 ? value / lcm(C, B) - 1 : value / lcm(C, B) ); var divAC = parseInt( value % lcm(A, C) === 0 ? value / lcm(A, C) - 1 : value / lcm(A, C) ); var divABC = parseInt( value % lcm(A, lcm(B, C)) === 0 ? value / lcm(A, lcm(B, C)) - 1 : value / lcm(A, lcm(B, C)) ); // Inclusion and Exclusion var elem = divA + divB + divC - divAC - divBC - divAB + divABC; if (elem === K - 1) { ans = value; break; } // Multiple should be smaller else if (elem > K - 1) { end = mid - 1; } // Multiple should be bigger else { start = mid + 1; } } return ans; } // Function to return the Kth element from // the required set if it a multiple of B function checkB(A, B, C, K) { // Start and End for Binary Search var start = 1; var end = K; // If no answer found return -1 var ans = -1; while (start <= end) { var mid = parseInt((start + end) / 2); var value = B * mid; var divB = mid - 1; var divA = parseInt(value % A === 0 ? value / A - 1 : value / A); var divC = parseInt(value % C === 0 ? value / C - 1 : value / C); var divAB = parseInt( value % lcm(A, B) === 0 ? value / lcm(A, B) - 1 : value / lcm(A, B) ); var divBC = parseInt( value % lcm(C, B) === 0 ? value / lcm(C, B) - 1 : value / lcm(C, B) ); var divAC = parseInt( value % lcm(A, C) === 0 ? value / lcm(A, C) - 1 : value / lcm(A, C) ); var divABC = parseInt( value % lcm(A, lcm(B, C)) === 0 ? value / lcm(A, lcm(B, C)) - 1 : value / lcm(A, lcm(B, C)) ); // Inclusion and Exclusion var elem = divA + divB + divC - divAC - divBC - divAB + divABC; if (elem === K - 1) { ans = value; break; } // Multiple should be smaller else if (elem > K - 1) { end = mid - 1; } // Multiple should be bigger else { start = mid + 1; } } return ans; } // Function to return the Kth element from // the required set if it a multiple of C function checkC(A, B, C, K) { // Start and End for Binary Search var start = 1; var end = K; // If no answer found return -1 var ans = -1; while (start <= end) { var mid = parseInt((start + end) / 2); var value = C * mid; var divC = mid - 1; var divB = parseInt(value % B === 0 ? value / B - 1 : value / B); var divA = parseInt(value % A === 0 ? value / A - 1 : value / A); var divAB = parseInt( value % lcm(A, B) === 0 ? value / lcm(A, B) - 1 : value / lcm(A, B) ); var divBC = parseInt( value % lcm(C, B) === 0 ? value / lcm(C, B) - 1 : value / lcm(C, B) ); var divAC = parseInt( value % lcm(A, C) === 0 ? value / lcm(A, C) - 1 : value / lcm(A, C) ); var divABC = parseInt( value % lcm(A, lcm(B, C)) === 0 ? value / lcm(A, lcm(B, C)) - 1 : value / lcm(A, lcm(B, C)) ); // Inclusion and Exclusion var elem = divA + divB + divC - divAC - divBC - divAB + divABC; if (elem === K - 1) { ans = value; break; } // Multiple should be smaller else if (elem > K - 1) { end = mid - 1; } // Multiple should be bigger else { start = mid + 1; } } return ans; } // Function to return the Kth element from // the set of multiples of A, B and C function findKthMultiple(A, B, C, K) { // Apply binary search on the multiples of A var res = checkA(A, B, C, K); console.log(res); // If the required element is not a // multiple of A then the multiples // of B and C need to be checked if (res === -1) res = checkB(A, B, C, K); // If the required element is neither // a multiple of A nor a multiple // of B then the multiples of C // need to be checked if (res === -1) res = checkC(A, B, C, K); return res; } // Driver code var A = 2, B = 4, C = 5, K = 5; document.write(findKthMultiple(A, B, C, K)); // This code is contributed by rdtank. </script>
8
Complejidad de tiempo: O(log K * log(min(a, b))), donde a y b son parámetros de gcd
Espacio auxiliar: O(log(min(a, b)))
Publicación traducida automáticamente
Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA