Recuento de secuencias palindrómicas contiguas de longitud impar en una array

Dada una array arr[][] de tamaño MxN , la tarea es encontrar el número de secuencias palindrómicas contiguas de longitud impar en esa array.

Ejemplo: 

Input: arr[][] = { { 2, 1, 2 },
                   { 1, 1, 1 },
                   { 2, 1, 2 }}
Output: 15
Explanation
Contigiuos Palindromic sequences of odd length are:
Row 1: (2), (1), (2), (2, 1, 2) => n(R1) = 4
Row 2: (1), (1), (1), (1, 1, 1) => n(R2) = 4
Row 3: (2), (1), (2), (2, 1, 2) => n(R3) = 4
Column 1: (2, 1, 2) => n(C1) = 1
Column 2: (1, 1, 1) => n(C2) = 1
Column 3: (2, 1, 2) => n(C3) = 1
Therefore, 
Total count = n(R1) + n(R2) + n(R3)
              + n(C1) + n(C2) + n(C3)
            = 15

Input: arr[][] = { { 1, 1, 1, 1, 1 },
                   { 1, 1, 1, 1, 1 },
                   { 1, 1, 1, 1, 1 },
                   { 1, 1, 1, 1, 1 },
                   { 1, 1, 1, 1, 1 } }
Output: 65 

Acercarse: 

1. Cree un recuento variable para almacenar el número total de secuencias palindrómicas contiguas en la array

2. Como cada elemento de la array es una secuencia palindrómica contigua de longitud 1, sume el número total de elementos de la array a la cuenta, i, e, 

count += (M*N)

3. Entonces, para la secuencia de longitud > 1,

  • Itere a través de cada elemento de la array y cuente el número de secuencias palindrómicas en cada fila comparando los elementos con los otros elementos a la izquierda y a la derecha.
  • De manera similar, cuente el número de secuencias palindrómicas en cada columna comparando los elementos con los otros elementos en su parte superior e inferior.
  1. Si lo encuentra, incremente el recuento de secuencias palindrómicas encontradas en 1.
  2. Imprima el recuento calculado de secuencias palindrómicas al final

A continuación se muestra la implementación del enfoque anterior: 

C++

// C++ code to Count the odd length contiguous
// Palindromic sequences in the matrix
 
#include <bits/stdc++.h>
using namespace std;
 
#define MAX 10
 
// Function to count the number of
// contiguous palindromic sequences in the matrix
int countPalindromes(int n, int m, int matrix[MAX][MAX])
{
    // Add the total number of elements
    // in the matrix to the count
    int count = n * m;
 
    // Length of possible sequence to be checked
    // for palindrome horizontally and vertically
    int length_of_sequence_row;
    int length_of_sequence_column;
 
    // Iterate through each element of the matrix
    // and count the number of palindromic
    // sequences in each row and column
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < m; j++) {
 
            // Find the possible length of sequences
            // that can be a palindrome
            length_of_sequence_row
                = min(j, m - 1 - j);
            length_of_sequence_column
                = min(i, n - i - 1);
 
            // From i, check if the sequence
            // formed by elements to its
            // left and right is
            // palindrome or not
            for (int k = 1; k <= length_of_sequence_row; k++) {
 
                // if the sequence [i, j-k] to [i, j+k]
                // is a palindrome,
                // increment the count by 1
                if (matrix[i][j - k] == matrix[i][j + k]) {
                    count++;
                }
                else {
                    break;
                }
            }
 
            // From i, check if the sequence
            // formed by elements to its
            // above and below is
            // palindrome or not
            for (int k = 1; k <= length_of_sequence_column; k++) {
 
                // if the sequence [i-k, j] to [i+k, j]
                // is a palindrome,
                // increment the count by 1
                if (matrix[i - k][j] == matrix[i + k][j]) {
                    count++;
                }
                else {
                    break;
                }
            }
        }
    }
 
    // Return the total count
    // of the palindromic sequences
    return count;
}
 
// Driver code
int main(void)
{
    int m = 3, n = 3;
    int matrix[MAX][MAX] = { { 2, 1, 2 },
                             { 1, 1, 1 },
                             { 2, 1, 2 } };
 
    cout << countPalindromes(n, m, matrix)
         << endl;
 
    return 0;
}

Java

// Java code to Count the odd length contiguous
// Palindromic sequences in the matrix
class GFG
{
 
static final int MAX = 10;
 
// Function to count the number of
// contiguous palindromic sequences in the matrix
static int countPalindromes(int n, int m, int matrix[][])
{
    // Add the total number of elements
    // in the matrix to the count
    int count = n * m;
 
    // Length of possible sequence to be checked
    // for palindrome horizontally and vertically
    int length_of_sequence_row;
    int length_of_sequence_column;
 
    // Iterate through each element of the matrix
    // and count the number of palindromic
    // sequences in each row and column
    for (int i = 0; i < n; i++)
    {
        for (int j = 0; j < m; j++)
        {
 
            // Find the possible length of sequences
            // that can be a palindrome
            length_of_sequence_row
                = Math.min(j, m - 1 - j);
            length_of_sequence_column
                = Math.min(i, n - i - 1);
 
            // From i, check if the sequence
            // formed by elements to its
            // left and right is
            // palindrome or not
            for (int k = 1; k <= length_of_sequence_row; k++)
            {
 
                // if the sequence [i, j-k] to [i, j+k]
                // is a palindrome,
                // increment the count by 1
                if (matrix[i][j - k] == matrix[i][j + k])
                {
                    count++;
                }
                else
                {
                    break;
                }
            }
 
            // From i, check if the sequence
            // formed by elements to its
            // above and below is
            // palindrome or not
            for (int k = 1; k <= length_of_sequence_column; k++)
            {
 
                // if the sequence [i-k, j] to [i+k, j]
                // is a palindrome,
                // increment the count by 1
                if (matrix[i - k][j] == matrix[i + k][j])
                {
                    count++;
                }
                else
                {
                    break;
                }
            }
        }
    }
 
    // Return the total count
    // of the palindromic sequences
    return count;
}
 
// Driver code
public static void main(String []args)
{
    int m = 3, n = 3;
    int matrix[][] = { { 2, 1, 2 },
                        { 1, 1, 1 },
                        { 2, 1, 2 } };
 
    System.out.print(countPalindromes(n, m, matrix)
        +"\n");
 
}
}
 
// This code is contributed by 29AjayKumar
`

Python3

# Python code to Count the odd length contiguous
# Palindromic sequences in the matrix
MAX = 10;
 
# Function to count the number of
# contiguous palindromic sequences in the matrix
def countPalindromes(n, m, matrix):
 
    # Add the total number of elements
    # in the matrix to the count
    count = n * m;
 
    # Length of possible sequence to be checked
    # for palindrome horizontally and vertically
    length_of_sequence_row = 0;
    length_of_sequence_column = 0;
 
    # Iterate through each element of the matrix
    # and count the number of palindromic
    # sequences in each row and column
    for i in range(n):
        for j in range(m):
 
            # Find the possible length of sequences
            # that can be a palindrome
            length_of_sequence_row = min(j, m - 1 - j);
            length_of_sequence_column = min(i, n - i - 1);
 
            # From i, check if the sequence
            # formed by elements to its
            # left and right is
            # palindrome or not
            for k in range(1, length_of_sequence_row + 1):
 
                # if the sequence [i, j-k] to [i, j+k]
                # is a palindrome,
                # increment the count by 1
                if (matrix[i][j - k] == matrix[i][j + k]):
                    count += 1;
                else:
                    break;
                 
            # From i, check if the sequence
            # formed by elements to its
            # above and below is
            # palindrome or not
            for k in range(1, length_of_sequence_column + 1):
 
                # if the sequence [i-k, j] to [i+k, j]
                # is a palindrome,
                # increment the count by 1
                if (matrix[i - k][j] == matrix[i + k][j]):
                    count += 1;
                else:
                    break;
                 
    # Return the total count
    # of the palindromic sequences
    return count;
 
# Driver code
if __name__ == '__main__':
    m = 3;
    n = 3;
    matrix = [ 2, 1, 2 ],[ 1, 1, 1 ],[ 2, 1, 2 ];
 
    print(countPalindromes(n, m, matrix));
 
# This code is contributed by 29AjayKumar

C#

// C# code to Count the odd length contiguous
// Palindromic sequences in the matrix
using System;
 
class GFG
{
 
    static int MAX = 10;
     
    // Function to count the number of
    // contiguous palindromic sequences in the matrix
    static int countPalindromes(int n, int m, int [,]matrix)
    {
        // Add the total number of elements
        // in the matrix to the count
        int count = n * m;
     
        // Length of possible sequence to be checked
        // for palindrome horizontally and vertically
        int length_of_sequence_row;
        int length_of_sequence_column;
     
        // Iterate through each element of the matrix
        // and count the number of palindromic
        // sequences in each row and column
        for (int i = 0; i < n; i++)
        {
            for (int j = 0; j < m; j++)
            {
     
                // Find the possible length of sequences
                // that can be a palindrome
                length_of_sequence_row
                    = Math.Min(j, m - 1 - j);
                length_of_sequence_column
                    = Math.Min(i, n - i - 1);
     
                // From i, check if the sequence
                // formed by elements to its
                // left and right is
                // palindrome or not
                for (int k = 1; k <= length_of_sequence_row; k++)
                {
     
                    // if the sequence [i, j-k] to [i, j+k]
                    // is a palindrome,
                    // increment the count by 1
                    if (matrix[i, j - k] == matrix[i, j + k])
                    {
                        count++;
                    }
                    else
                    {
                        break;
                    }
                }
     
                // From i, check if the sequence
                // formed by elements to its
                // above and below is
                // palindrome or not
                for (int k = 1; k <= length_of_sequence_column; k++)
                {
     
                    // if the sequence [i-k, j] to [i+k, j]
                    // is a palindrome,
                    // increment the count by 1
                    if (matrix[i - k, j] == matrix[i + k, j])
                    {
                        count++;
                    }
                    else
                    {
                        break;
                    }
                }
            }
        }
     
        // Return the total count
        // of the palindromic sequences
        return count;
    }
     
    // Driver code
    public static void Main()
    {
        int m = 3, n = 3;
        int [,]matrix = { { 2, 1, 2 },
                            { 1, 1, 1 },
                            { 2, 1, 2 } };
     
        Console.WriteLine(countPalindromes(n, m, matrix) );
    }
}
 
// This code is contributed by AnkitRai01

Javascript

<script>
// Javascript code to Count the odd length contiguous
// Palindromic sequences in the matrix
 
let MAX = 10
 
// Function to count the number of
// contiguous palindromic sequences in the matrix
function countPalindromes(n, m, matrix) {
    // Add the total number of elements
    // in the matrix to the count
    let count = n * m;
 
    // Length of possible sequence to be checked
    // for palindrome horizontally and vertically
    let length_of_sequence_row;
    let length_of_sequence_column;
 
    // Iterate through each element of the matrix
    // and count the number of palindromic
    // sequences in each row and column
    for (let i = 0; i < n; i++) {
        for (let j = 0; j < m; j++) {
 
            // Find the possible length of sequences
            // that can be a palindrome
            length_of_sequence_row
                = Math.min(j, m - 1 - j);
            length_of_sequence_column
                = Math.min(i, n - i - 1);
 
            // From i, check if the sequence
            // formed by elements to its
            // left and right is
            // palindrome or not
            for (let k = 1; k <= length_of_sequence_row; k++) {
 
                // if the sequence [i, j-k] to [i, j+k]
                // is a palindrome,
                // increment the count by 1
                if (matrix[i][j - k] == matrix[i][j + k]) {
                    count++;
                }
                else {
                    break;
                }
            }
 
            // From i, check if the sequence
            // formed by elements to its
            // above and below is
            // palindrome or not
            for (let k = 1; k <= length_of_sequence_column; k++) {
 
                // if the sequence [i-k, j] to [i+k, j]
                // is a palindrome,
                // increment the count by 1
                if (matrix[i - k][j] == matrix[i + k][j]) {
                    count++;
                }
                else {
                    break;
                }
            }
        }
    }
 
    // Return the total count
    // of the palindromic sequences
    return count;
}
 
// Driver code
 
let m = 3, n = 3;
let matrix = [[2, 1, 2],
[1, 1, 1],
[2, 1, 2]];
 
document.write(countPalindromes(n, m, matrix) + "<br>");
</script>
Producción: 

15

 

Complejidad del tiempo: O(n*m*max(n, m))

Espacio Auxiliar: O(1)
 

Publicación traducida automáticamente

Artículo escrito por skylags y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *