Clase 11 RD Sharma Solutions – Capítulo 2 Relaciones – Ejercicio 2.2

Pregunta 1: dado A = {1, 2, 3}, B = {3, 4}, C = {4, 5, 6}, encuentra (A × B) ∩ (B × C).

Solución:

Dado:

A = {1, 2, 3}, B = {3, 4} y C = {4, 5, 6}

Encontremos: (A × B) ∩ (B × C)

(A × B) = {1, 2, 3} × {3, 4}

= {(1, 3), (1, 4), (2, 3), (2, 4), (3, 3), (3, 4)}

(B × C) = {3, 4} × {4, 5, 6}

= {(3, 4), (3, 5), (3, 6), (4, 4), (4, 5), (4, 6)}

Por lo tanto,

(A × B) ∩ (B × C) = {(3, 4)}

Pregunta 2: Si A = {2, 3}, B = {4, 5}, C = {5, 6} encuentra A × (B ∪ C), (A × B) ∪ (A × C).

Solución:

Dado: 

A = {2, 3}, B = {4, 5} y C = {5, 6}

Encontremos: A x (B ∪ C) y (A x B) ∪ (A x C)

(B ∪ C) = {4, 5, 6}

A × (B ∪ C) = {2, 3} × {4, 5, 6}

= {(2, 4), (2, 5), (2, 6), (3, 4), (3, 5), (3, 6)}

(A × B) = {2, 3} × {4, 5}

= {(2, 4), (2, 5), (3, 4), (3, 5)}

(A × C) = {2, 3} × {5, 6}

= {(2, 5), (2, 6), (3, 5), (3, 6)}

Por lo tanto,

(A × B) ∪ (A × C) = {(2, 4), (2, 5), (2, 6), (3, 4), (3, 5), (3, 6)}

A × (B ∪ C) = {(2, 4), (2, 5), (2, 6), (3, 4), (3, 5), (3, 6)}

Pregunta 3: Si A = {1, 2, 3}, B = {4}, C = {5}, verifica que:

(i) A × (B ∪ C) = (A × B) ∪ (A × C)

(ii) A × (B ∩ C) = (A × B) ∩ (A × C)

(iii) A × (B – C) = (A × B) – (A × C)

Solución:

Dado:

A = {1, 2, 3}, B = {4} y C = {5}

(i) A × (B ∪ C) = (A × B) ∪ (A × C)

Supongamos LHS: (B ∪ C)

(B ∪ C) = {4, 5}

A × (B ∪ C) = {1, 2, 3} × {4, 5}

= {(1, 4), (1, 5), (2, 4), (2, 5), (3, 4), (3, 5)}

Ahora, RHS

(A × B) = {1, 2, 3} × {4}

= {(1, 4), (2, 4), (3, 4)}

(A × C) = {1, 2, 3} × {5}

= {(1, 5), (2, 5), (3, 5)}

(A × B) ∪ (A × C) = {(1, 4), (2, 4), (3, 4), (1, 5), (2, 5), (3, 5)}

Por lo tanto,

LHS = RHS

(ii) A × (B ∩ C) = (A × B) ∩ (A × C)

Supongamos LHS: (B ∩ C)

(B ∩ C) = ∅ (Sin elemento común)

A × (B ∩ C) = {1, 2, 3} × ∅

= ∅

Ahora, RHS

(A × B) = {1, 2, 3} × {4}

= {(1, 4), (2, 4), (3, 4)}

(A × C) = {1, 2, 3} × {5}

= {(1, 5), (2, 5), (3, 5)}

(A × B) ∩ (A × C) = ∅

Por lo tanto,

LHS = RHS

(iii) A × (B − C) = (A × B) − (A × C)

Supongamos LHS: (B − C)

(B − C) = ∅

UN × (B – C) = {1, 2, 3} × ∅

= ∅

Ahora, RHS

(A × B) = {1, 2, 3} × {4}

= {(1, 4), (2, 4), (3, 4)}

(A × C) = {1, 2, 3} × {5}

= {(1, 5), (2, 5), (3, 5)}

(A × B) − (A × C) = ∅

Por lo tanto,

LHS = RHS

Pregunta 4: Sean A = {1, 2}, B = {1, 2, 3, 4}, C = {5, 6} y D = {5, 6, 7, 8}. Comprueba eso:

(i) A × C ⊂ B × D

(ii) A × (B ∩ C) = (A × B) ∩ (A × C)

Solución:

Dado:

A = {1, 2}, B = {1, 2, 3, 4}, C = {5, 6} y D = {5, 6, 7, 8}

(i) A x C ⊂ B x D

Consideremos LHS A x C

A × C = {1, 2} × {5, 6}

= {(1, 5), (1, 6), (2, 5), (2, 6)}

Ahora, RHS

B × P = {1, 2, 3, 4} × {5, 6, 7, 8}

= {(1, 5), (1, 6), (1, 7), (1, 8), (2, 5), (2, 6), (2, 7), (2, 8), (3, 5), (3, 6), (3, 7), (3, 8), (4, 5), (4, 6), (4, 7), (4, 8)}

Ya que todos los elementos de A × C están en B × D.

Por lo tanto,

Podemos decir A × C ⊂ B × D

(ii) A × (B ∩ C) = (A × B) ∩ (A × C)

Supongamos LHS A × (B ∩ C)

(B ∩ C) = ∅

A × (B ∩ C) = {1, 2} × ∅

= ∅

Ahora, RHS

(A × B) = {1, 2} × {1, 2, 3, 4}

= {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4)}

(A × C) = {1, 2} × {5, 6}

= {(1, 5), (1, 6), (2, 5), (2, 6)}

Por lo tanto, no hay un elemento común entre A × B y A × C

(A × B) ∩ (A × C) = ∅

Por lo tanto,

A × (B ∩ C) = (A × B) ∩ (A × C)

Pregunta 5: Si A = {1, 2, 3}, B = {3, 4} y C = {4, 5, 6}, encuentra

(i) A × (B ∩ C)

(ii) (A × B) ∩ (A × C)

(iii) A × (B ∪ C)

(iv) (A × B) ∪ (A × C)

Solución:

Dado:

A = {1, 2, 3}, B = {3, 4} y C = {4, 5, 6}

(i) A × (B ∩ C)

(B ∩ C) = {4}

A × (B ∩ C) = {1, 2, 3} × {4}

= {(1, 4), (2, 4), (3, 4)}

(ii) (A × B) ∩ (A × C)

(A × B) = {1, 2, 3} × {3, 4}

= {(1, 3), (1, 4), (2, 3), (2, 4), (3, 3), (3, 4)}

(A × C) = {1, 2, 3} × {4, 5, 6}

= {(1, 4), (1, 5), (1, 6), (2, 4), (2, 5), (2, 6), (3, 4), (3, 5), (3, 6)}

(A × B) ∩ (A × C) = {(1, 4), (2, 4), (3, 4)}

(iii) A × (B ∪ C)

(B ∪ C) = {3, 4, 5, 6}

A × (B ∪ C) = {1, 2, 3} × {3, 4, 5, 6}

= {(1, 3), (1, 4), (1, 5), (1, 6), (2, 3), (2, 4), (2, 5), (2, 6), (3, 3), (3, 4), (3, 5), (3, 6)}

(iv) (A × B) ∪ (A × C)

(A × B) = {1, 2, 3} × {3, 4}

= {(1, 3), (1, 4), (2, 3), (2, 4), (3, 3), (3, 4)}

(A × C) = {1, 2, 3} × {4, 5, 6}

= {(1, 4), (1, 5), (1, 6), (2, 4), (2, 5), (2, 6), (3, 4), (3, 5), (3, 6)}

(A × B) ∪ (A × C) = {(1, 3), (1, 4), (1, 5), (1, 6), (2, 3), (2, 4), ( 2, 5), (2, 6), (3, 3), (3, 4), (3, 5), (3, 6)}

Pregunta 6: Demuestre que:

(i) (A ∪ B) × C = (A × C) = (A × C) ∪ (B × C)

(ii) (A ∩ B) × C = (A × C) ∩ (B × C)

Solución:

(i) (A ∪ B) × C = (A × C) = (A × C) ∪ (B × C)

Sea (x, y) un elemento arbitrario de (A ∪ B) × C

(x, y) ∈ (A ∪ B) C

Como (x, y) son elementos del producto cartesiano de (A ∪ B) × C

x ∈ (A ∪ B) y y ∈ C

(x ∈ A o x ∈ B) y y ∈ C

(x ∈ A y y ∈ C) o (x ∈ Band y ∈ C)

(x, y) ∈ A × C o (x, y) ∈ B × C

(x, y) ∈ (A × C) ∪ (B × C) … (1)

Sea (x, y) un elemento arbitrario de (A × C) ∪ (B × C).

(x, y) ∈ (A × C) ∪ (B × C)

(x, y) ∈ (A × C) o (x, y) ∈ (B × C)

(x ∈ A y y ∈ C) o (x ∈ B y y ∈ C)

(x ∈ A o x ∈ B) y y ∈ C

x ∈ (A ∪ B) y y ∈ C

(x, y) ∈ (A ∪ B) × C … (2)

De 1 y 2, obtenemos: (A ∪ B) × C = (A × C) ∪ (B × C)

(ii) (A ∩ B) × C = (A × C) ∩ (B × C)

Sea (x, y) un elemento arbitrario de (A ∩ B) × C.

(x, y) ∈ (A ∩ B) × C

Dado que (x, y) son elementos del producto cartesiano de (A ∩ B) × C

x ∈ (A ∩ B) y y ∈ C

(x ∈ A y x ∈ B) y y ∈ C

(x ∈ A y y ∈ C) y (x ∈ Band y ∈ C)

(x, y) ∈ A × C y (x, y) ∈ B × C

(x, y) ∈ (A × C) ∩ (B × C) … (1)

Sea (x, y) un elemento arbitrario de (A × C) ∩ (B × C).

(x, y) ∈ (A × C) ∩ (B × C)

(x, y) ∈ (A × C) y (x, y) ∈ (B × C)

(x ∈A y y ∈ C) y (x ∈ Band y ∈ C)

(x ∈A y x ∈ B) y y ∈ C

x ∈ (A ∩ B) y y ∈ C

(x, y) ∈ (A ∩ B) × C … (2)

De 1 y 2, obtenemos: (A ∩ B) × C = (A × C) ∩ (B × C)

Pregunta 7: Si A × B ⊆ C × D y A ∩ B ∈ ∅, Demuestre que A ⊆ C y B ⊆ D.

Solución:

Dado:

A × B ⊆ C x D y A ∩ B ∈ ∅

A × B ⊆ C x D denota que A × B es un subconjunto de C × D, es decir, cada elemento A × B está en C × D.

Y A ∩ B ∈ ∅ denota A y B no tienen ningún elemento común entre ellos.

A × B = {(a, b): a ∈ A y b ∈ B}

Por lo tanto,

Podemos decir (a, b) ⊆ C × D [Ya que, A × B ⊆ C x D está dado]

a ∈ C y b ∈ D

un ∈ UN = un ∈ C

UN ⊆ C

Y

segundo ∈ segundo = segundo ∈ re

segundo ⊆ re

Por lo tanto probado.

Publicación traducida automáticamente

Artículo escrito por sudhasinghsudha90 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *