Dado un Número . La tarea es comprobar si N es un número troyano o no.
Trojan Number es un número que es un número fuerte pero no un poder perfecto. Un número N se conoce como número fuerte si, para todo divisor primo o factor p de N, p2 también es divisor. En otras palabras, cada factor primo aparece al menos dos veces.
Todos los números de Troya son fuertes. Sin embargo, no todos los números fuertes son números troyanos: solo aquellos que no se pueden representar como m k , donde m y k son números enteros positivos mayores que 1.
Ejemplos :
Input : N = 108 Output : YES Input : N = 8 Output : NO
La idea es almacenar la cuenta de cada factor primo y comprobar si la cuenta es mayor que 2, entonces será un número fuerte .
Esta parte se puede calcular fácilmente por descomposición en factores primos a través de la criba .
El siguiente paso es verificar si el número dado no se puede expresar como x y . Para comprobar si un número es potencia perfecta o no , consulta este artículo.
A continuación se muestra la implementación del problema anterior:
C++
// CPP program to check if a number is // Trojan Number or not #include <bits/stdc++.h> using namespace std; // Function to check if a number // can be expressed as x^y bool isPerfectPower(int n) { if (n == 1) return true; // Try all numbers from 2 to sqrt(n) as base for (int x = 2; x <= sqrt(n); x++) { int y = 2; int p = pow(x, y); // Keep increasing y while power 'p' // is smaller than n. while (p <= n && p > 0) { if (p == n) return true; y++; p = pow(x, y); } } return false; } // Function to check if a number is Strong bool isStrongNumber(int n) { unordered_map<int, int> count; while (n % 2 == 0) { n = n / 2; count[2]++; } // count the number for each prime factor for (int i = 3; i <= sqrt(n); i += 2) { while (n % i == 0) { n = n / i; count[i]++; } } if (n > 2) count[n]++; int flag = 0; for (auto b : count) { // minimum number of prime divisors // should be 2 if (b.second == 1) { flag = 1; break; } } if (flag == 1) return false; else return true; } // Function to check if a number // is Trojan Number bool isTrojan(int n) { if (!isPerfectPower(n) && isStrongNumber(n)) return true; else return false; } // Driver Code int main() { int n = 108; if (isTrojan(n)) cout << "YES"; else cout << "NO"; return 0; }
Java
// Java program to check if a number is // Trojan Number or not import java.util.*; class GFG { // Function to check if a number // can be expressed as x^y static boolean isPerfectPower(int n) { if (n == 1) { return true; } // Try all numbers from 2 to sqrt(n) as base for (int x = 2; x <= Math.sqrt(n); x++) { int y = 2; int p = (int) Math.pow(x, y); // Keep increasing y while power 'p' // is smaller than n. while (p <= n && p > 0) { if (p == n) { return true; } y++; p = (int) Math.pow(x, y); } } return false; } // Function to check if a number is Strong static boolean isStrongNumber(int n) { HashMap<Integer, Integer> count = new HashMap<Integer, Integer>(); while (n % 2 == 0) { n = n / 2; if (count.containsKey(2)) { count.put(2, count.get(2) + 1); } else { count.put(2, 1); } } // count the number for each prime factor for (int i = 3; i <= Math.sqrt(n); i += 2) { while (n % i == 0) { n = n / i; if (count.containsKey(i)) { count.put(i, count.get(i) + 1); } else { count.put(i, 1); } } } if (n > 2) { if (count.containsKey(n)) { count.put(n, count.get(n) + 1); } else { count.put(n, 1); } } int flag = 0; for (Map.Entry<Integer, Integer> b : count.entrySet()) { // minimum number of prime divisors // should be 2 if (b.getValue() == 1) { flag = 1; break; } } if (flag == 1) { return false; } else { return true; } } // Function to check if a number // is Trojan Number static boolean isTrojan(int n) { if (!isPerfectPower(n) && isStrongNumber(n)) { return true; } else { return false; } } // Driver Code public static void main(String[] args) { int n = 108; if (isTrojan(n)) { System.out.println("Yes"); } else { System.out.println("No"); } } } // This code is contributed by PrinciRaj1992
Python3
# Python 3 program to check if a number # is Trojan Number or not from math import sqrt, pow # Function to check if a number # can be expressed as x^y def isPerfectPower(n): if n == 1: return True # Try all numbers from 2 to # sqrt(n) as base for x in range(2, int(sqrt(n)) + 1): y = 2 p = pow(x, y) # Keep increasing y while power # 'p' is smaller than n. while p <= n and p > 0: if p == n: return True y += 1 p = pow(x, y) return False # Function to check if a number # is Strong def isStrongNumber(n): count = {i:0 for i in range(n)} while n % 2 == 0: n = n // 2 count[2] += 1 # count the number for each # prime factor for i in range(3,int(sqrt(n)) + 1, 2): while n % i == 0: n = n // i count[i] += 1 if n > 2: count[n] += 1 flag = 0 for key,value in count.items(): # minimum number of prime # divisors should be 2 if value == 1: flag = 1 break if flag == 1: return False return True # Function to check if a number # is Trojan Number def isTrojan(n): return isPerfectPower(n) == False and isStrongNumber(n) # Driver Code if __name__ == '__main__': n = 108 if (isTrojan(n)): print("YES") else: print("NO") # This code is contributed by # Surendra_Gangwar
C#
// C# program to check if a number is // Trojan Number or not using System; using System.Collections.Generic; class GFG { // Function to check if a number // can be expressed as x^y static bool isPerfectPower(int n) { if (n == 1) { return true; } // Try all numbers from 2 to sqrt(n) as base for (int x = 2; x <= Math.Sqrt(n); x++) { int y = 2; int p = (int) Math.Pow(x, y); // Keep increasing y while power 'p' // is smaller than n. while (p <= n && p > 0) { if (p == n) { return true; } y++; p = (int) Math.Pow(x, y); } } return false; } // Function to check if a number is Strong static bool isStrongNumber(int n) { Dictionary<int, int> count = new Dictionary<int, int>(); while (n % 2 == 0) { n = n / 2; if (count.ContainsKey(2)) { count[2] = count[2] + 1; } else { count.Add(2, 1); } } // count the number for each prime factor for (int i = 3; i <= Math.Sqrt(n); i += 2) { while (n % i == 0) { n = n / i; if (count.ContainsKey(i)) { count[i] = count[i] + 1; } else { count.Add(i, 1); } } } if (n > 2) { if (count.ContainsKey(n)) { count[n] = count[n] + 1; } else { count.Add(n, 1); } } int flag = 0; foreach(KeyValuePair<int, int> b in count) { // minimum number of prime divisors // should be 2 if (b.Value == 1) { flag = 1; break; } } if (flag == 1) { return false; } else { return true; } } // Function to check if a number // is Trojan Number static bool isTrojan(int n) { if (!isPerfectPower(n) && isStrongNumber(n)) { return true; } else { return false; } } // Driver Code public static void Main(String[] args) { int n = 108; if (isTrojan(n)) { Console.WriteLine("Yes"); } else { Console.WriteLine("No"); } } } // This code is contributed by Princi Singh
Javascript
<script> // javascript program to check if a number is // Trojan Number or not // Function to check if a number // can be expressed as x^y function isPerfectPower(n) { if (n == 1) { return true; } // Try all numbers from 2 to sqrt(n) as base for (var x = 2; x <= Math.sqrt(n); x++) { var y = 2; var p = parseInt( Math.pow(x, y)); // Keep increasing y while power 'p' // is smaller than n. while (p <= n && p > 0) { if (p == n) { return true; } y++; p = parseInt( Math.pow(x, y)); } } return false; } // Function to check if a number is Strong function isStrongNumber(n) { var count = new Map(); while (n % 2 == 0) { n = n / 2; if (count.has(2)) { count.set(2, count.get(2) + 1); } else { count.set(2, 1); } } // count the number for each prime factor for (var i = 3; i <= Math.sqrt(n); i += 2) { while (n % i == 0) { n = n / i; if (count.has(i)) { count.set(i, count.get(i) + 1); } else { count.set(i, 1); } } } if (n > 2) { if (count.has(n)) { count.set(n, count.get(n) + 1); } else { count.set(n, 1); } } var flag = 0; const iterator = count[Symbol.iterator](); let itr = iterator.next() for (let i = 0; i < count.size; i++) { console.log(itr.value, itr.done) if (itr.value == 1) { flag = 1; break; } itr = iterator.next() } if (flag == 1) { return false; } else { return true; } } // Function to check if a number // is Trojan Number function isTrojan(n) { if (!isPerfectPower(n) && isStrongNumber(n)) { return true; } else { return false; } } // Driver Code var n = 108; if (isTrojan(n)) { document.write("Yes"); } else { document.write("No"); } // This code contributed by gauravrajput1 </script>
YES
Publicación traducida automáticamente
Artículo escrito por Kushdeep_Mittal y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA