Un primo truncable por la derecha es un primo que sigue siendo primo cuando se elimina sucesivamente el último dígito («derecho»). Por ejemplo, 239 es primo truncable por la derecha ya que 239, 23 y 2 son todos primos. Hay 83 primos truncables por la derecha.
La tarea es comprobar si el número dado (N > 0) es primo truncable por la derecha o no.
Ejemplos:
Input: 239 Output: Yes Input: 101 Output: No 101 is not right-truncatable prime because numbers formed are 101, 10 and 1. Here, 101 is prime but 10 and 1 are not prime.
La idea es generar todos los números primos menores o iguales al número N dado usando la Criba de Eratóstenes . Una vez que hemos generado todos esos números primos, comprobamos si el número sigue siendo primo cuando se elimina sucesivamente el último dígito («derecho»).
C++
//C++ Program to check // whether a given number // is right-truncatable // prime or not. #include<bits/stdc++.h> using namespace std; // Generate all prime numbers less than n. bool sieveOfEratosthenes(int n, bool isPrime[]) { // Initialize all entries // of boolean array as // true. A value in // isPrime[i] will finally // be false if i is Not a // prime, else true // bool isPrime[n+1]; isPrime[0] = isPrime[1] = false; for( int i = 2; i <= n; i++) isPrime[i] = true; for (int p = 2; p * p<=n; p++) { // If isPrime[p] is not changed, then it is // a prime if (isPrime[p] == true) { // Update all multiples of p for (int i = p * 2; i <= n; i += p) isPrime[i] = false; } } } // Returns true if n is right-truncatable, // else false bool rightTruPrime(int n) { // Generating primes using Sieve bool isPrime[n+1]; sieveOfEratosthenes(n, isPrime); // Checking whether the number remains // prime when the last ("right") // digit is successively removed while (n) { if (isPrime[n]) n = n / 10; else return false; } return true; } // Driver program int main() { int n = 59399; if (rightTruPrime(n)) cout << "Yes" << endl; else cout << "No" << endl; return 0; }
Java
// Java code to check // right-truncatable // prime or not. import java.io.*; class GFG { // Generate all prime // numbers less than n. static void sieveOfEratosthenes (int n, boolean isPrime[]) { // Initialize all entries of // boolean array as true. A // value in isPrime[i] will // finally be false if i is // Not a prime, else true // bool isPrime[n+1]; isPrime[0] = isPrime[1] = false; for (int i = 2; i <= n; i++) isPrime[i] = true; for (int p=2; p*p<=n; p++) { // If isPrime[p] is not // changed, then it // is a prime if (isPrime[p] == true) { // Update all multiples of p for (int i = p * 2; i <= n; i += p) isPrime[i] = false; } } } // Returns true if n is // right-truncatable, // else false static boolean rightTruPrime(int n) { // Generating primes using Sieve boolean isPrime[] = new boolean[n+1]; sieveOfEratosthenes(n, isPrime); // Checking whether the number // remains prime when the last (right) // digit is successively removed while (n != 0) { if (isPrime[n]) n = n / 10; else return false; } return true; } // Driver program public static void main(String args[]) { int n = 59399; if (rightTruPrime(n)) System.out.println("Yes"); else System.out.println("No"); } } /* This code is contributed by Nikita Tiwari.*/
Python3
# Python3 Program to check # whether a given number # is right-truncatable # prime or not. # Generate all prime numbers less than n. def sieveOfEratosthenes(n,isPrime) : # Initialize all entries # of boolean array as # true. A value in isPrime[i] # will finally be false if # i is Not a prime, else true # bool isPrime[n+1]; isPrime[0] = isPrime[1] = False for i in range(2, n+1) : isPrime[i] = True p = 2 while(p * p <= n) : # If isPrime[p] is not changed, then it is # a prime if (isPrime[p] == True) : # Update all multiples of p i = p * 2 while(i <= n) : isPrime[i] = False i = i + p p = p + 1 # Returns true if n is right-truncatable, else false def rightTruPrime(n) : # Generating primes using Sieve isPrime=[None] * (n+1) sieveOfEratosthenes(n, isPrime) # Checking whether the # number remains prime # when the last ("right") # digit is successively # removed while (n != 0) : if (isPrime[n]) : n = n // 10 else : return False return True # Driven program n = 59399 if (rightTruPrime(n)) : print("Yes") else : print("No") # This code is contributed by Nikita Tiwari.
C#
// C# code to check right- // truncatable prime or not using System; class GFG { // Generate all prime // numbers less than n. static void sieveOfEratosthenes(int n, bool[] isPrime) { // Initialize all entries of // boolean array as true. A // value in isPrime[i] will // finally be false if i is // Not a prime, else true // bool isPrime[n+1]; isPrime[0] = isPrime[1] = false; for (int i = 2; i <= n; i++) isPrime[i] = true; for (int p = 2; p * p <= n; p++) { // If isPrime[p] is not // changed, then it // is a prime if (isPrime[p] == true) { // Update all multiples of p for (int i = p * 2; i <= n; i += p) isPrime[i] = false; } } } // Returns true if n is right- // truncatable, else false static bool rightTruPrime(int n) { // Generating primes using Sieve bool[] isPrime = new bool[n + 1]; sieveOfEratosthenes(n, isPrime); // Checking whether the number // remains prime when last (right) // digit is successively removed while (n != 0) { if (isPrime[n]) n = n / 10; else return false; } return true; } // Driven program public static void Main() { int n = 59399; if (rightTruPrime(n)) Console.WriteLine("Yes"); else Console.WriteLine("No"); } } // This code is contributed by Anant Agarwal
PHP
<?php // Program to check whether a given number // is right-truncatable prime or not. // Generate all prime numbers less than n. function sieveOfEratosthenes($n, &$isPrime) { // Initialize all entries of boolean // array as true. A value in isPrime[i] // will finally be false if i is Not a // prime, else true bool isPrime[n+1]; $isPrime[0] = $isPrime[1] = false; for ($p = 2; $p * $p <= $n; $p++) { // If isPrime[p] is not changed, // then it is a prime if ($isPrime[$p] == true) { // Update all multiples of p for ($i = $p * 2; $i <= $n; $i += $p) $isPrime[$i] = false; } } } // Returns true if n is right-truncatable, // else false function rightTruPrime($n) { // Generating primes using Sieve $isPrime = array_fill(0, $n + 1, true); sieveOfEratosthenes($n, $isPrime); // Checking whether the number remains // prime when the last ("right") // digit is successively removed while ($n) { if ($isPrime[$n]) $n = (int)($n / 10); else return false; } return true; } // Driver Code $n = 59399; if (rightTruPrime($n)) echo "Yes\n"; else echo "No\n"; // This code is contributed by mits ?>
Javascript
<script> // javascript code to check // right-truncatable // prime or not. // Generate all prime // numbers less than n. function sieveOfEratosthenes(n, isPrime) { // Initialize all entries of // boolean array as true. A // value in isPrime[i] will // finally be false if i is // Not a prime, else true // bool isPrime[n+1]; isPrime[0] = isPrime[1] = false; for (let i = 2; i <= n; i++) isPrime[i] = true; for (let p = 2; p * p <= n; p++) { // If isPrime[p] is not // changed, then it // is a prime if (isPrime[p] == true) { // Update all multiples of p for (let i = p * 2; i <= n; i += p) isPrime[i] = false; } } } // Returns true if n is // right-truncatable, // else false function rightTruPrime(n) { // Generating primes using Sieve let isPrime = new Array(n + 1).fill(false); sieveOfEratosthenes(n, isPrime); // Checking whether the number // remains prime when the last (right) // digit is successively removed while (n != 0) { if (isPrime[n]) n = parseInt(n / 10); else return false; } return true; } // Driver program var n = 59399; if (rightTruPrime(n)) document.write("Yes"); else document.write("No"); // This code is contributed by shikhasingrajput </script>
Producción:
Yes
Artículo relacionado: Referencias principales truncables por la izquierda : https://en.wikipedia.org/wiki/Truncatable_prime Este artículo es una contribución de Rahul Agrawal . Si te gusta GeeksforGeeks y te gustaría contribuir, también puedes escribir un artículo usando write.geeksforgeeks.org o enviar tu artículo por correo a review-team@geeksforgeeks.org. Vea su artículo que aparece en la página principal de GeeksforGeeks y ayude a otros Geeks. Escriba comentarios si encuentra algo incorrecto o si desea compartir más información sobre el tema tratado anteriormente.
Publicación traducida automáticamente
Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA