Dada la cuenta de los dígitos 1, 2, 3, 4. Usando estos dígitos, solo puede formar los números 234 y 12. La tarea es encontrar la suma máxima posible que se puede obtener después de formar los números.
Nota : El objetivo es solo maximizar la suma, incluso si algunos de los dígitos quedan sin usar.
Ejemplos:
Input : c1 = 5, c2 = 2, c3 = 3, c4 = 4 Output : 468 Explanation : We can form two 234s Input : c1 = 5, c2 = 3, c3 = 1, c4 = 5 Output : 258 Explanation : We can form one 234 and two 12s
Enfoque : Un enfoque eficiente es intentar primero hacer 234’s. El número posible de 234s es mínimo de c2, c3, c4. Después de esto, con los 1 y 2 restantes, intente formar 12.
A continuación se muestra la implementación del enfoque anterior:
C++
// CPP program to maximum possible sum #include <bits/stdc++.h> using namespace std; // Function to find the maximum possible sum int Maxsum(int c1, int c2, int c3, int c4) { // To store required sum int sum = 0; // Number of 234's can be formed int two34 = min(c2, min(c3, c4)); // Sum obtained with 234s sum = two34 * 234; // Remaining 2's c2 -= two34; // Sum obtained with 12s sum += min(c2, c1) * 12; // Return the required sum return sum; } // Driver code int main() { int c1 = 5, c2 = 2, c3 = 3, c4 = 4; cout << Maxsum(c1, c2, c3, c4); return 0; }
Java
// Java program to maximum possible sum class GFG { // Function to find the maximum possible sum static int Maxsum(int c1, int c2, int c3, int c4) { // To store required sum int sum = 0; // Number of 234's can be formed int two34 = Math.min(c2,Math.min(c3, c4)); // Sum obtained with 234s sum = two34 * 234; // Remaining 2's c2 -= two34; // Sum obtained with 12s sum +=Math.min(c2, c1) * 12; // Return the required sum return sum; } // Driver code public static void main(String[] args) { int c1 = 5, c2 = 2, c3 = 3, c4 = 4; System.out.println(Maxsum(c1, c2, c3, c4)); } } // This code is contributed by Code_Mech.
Python3
# Python3 program to maximum possible sum # Function to find the maximum # possible sum def Maxsum(c1, c2, c3, c4): # To store required sum sum = 0 # Number of 234's can be formed two34 = min(c2, min(c3, c4)) # Sum obtained with 234s sum = two34 * 234 # Remaining 2's c2 -= two34 sum += min(c2, c1) * 12 # Return the required sum return sum # Driver Code c1 = 5; c2 = 2; c3 = 3; c4 = 4 print(Maxsum(c1, c2, c3, c4)) # This code is contributed by Shrikant13
C#
// C# program to maximum possible sum using System; class GFG { // Function to find the maximum possible sum static int Maxsum(int c1, int c2, int c3, int c4) { // To store required sum int sum = 0; // Number of 234's can be formed int two34 = Math.Min(c2, Math.Min(c3, c4)); // Sum obtained with 234s sum = two34 * 234; // Remaining 2's c2 -= two34; // Sum obtained with 12s sum +=Math.Min(c2, c1) * 12; // Return the required sum return sum; } // Driver code public static void Main() { int c1 = 5, c2 = 2, c3 = 3, c4 = 4; Console.WriteLine(Maxsum(c1, c2, c3, c4)); } } // This code is contributed // by Akanksha Rai
PHP
<?php // PHP program to maximum possible sum // Function to find the maximum possible sum function Maxsum($c1, $c2, $c3, $c4) { // To store required sum $sum = 0; // Number of 234's can be formed $two34 = min($c2, min($c3, $c4)); // Sum obtained with 234s $sum = $two34 * 234; // Remaining 2's $c2 -= $two34; // Sum obtained with 12s $sum += min($c2, $c1) * 12; // Return the required sum return $sum; } // Driver code $c1 = 5; $c2 = 2; $c3 = 3; $c4 = 4; echo Maxsum($c1, $c2, $c3, $c4); // This code is contributed by Ryuga ?>
Javascript
<script> // Java Script program to maximum possible sum // Function to find the maximum possible sum function Maxsum(c1,c2,c3,c4) { // To store required sum let sum = 0; // Number of 234's can be formed let two34 = Math.min(c2,Math.min(c3, c4)); // Sum obtained with 234s sum = two34 * 234; // Remaining 2's c2 -= two34; // Sum obtained with 12s sum +=Math.min(c2, c1) * 12; // Return the required sum return sum; } // Driver code let c1 = 5, c2 = 2, c3 = 3, c4 = 4; document.write(Maxsum(c1, c2, c3, c4)); // This code is contributed by sravan kumar G </script>
468
Complejidad de tiempo: O(1)
Espacio Auxiliar: O(1)
Publicación traducida automáticamente
Artículo escrito por pawan_asipu y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA