Encuentre los gemelos más grandes en un rango dado

Dado un rango [bajo…alto], imprime los números gemelos más grandes en el rango dado (bajo y alto inclusive). Dos números son gemelos si son primos y la diferencia es 2.
Ejemplos: 
 

Input: low = 10, high = 100
Output: Largest twins in given range: (71, 73)

Input: low = 1, high = 20
Output: Largest twins in given range: (17, 19)

Una solución simple es comenzar desde alto y para cada número x verificar si x y x – 2 son primos y no lo son. Aquí x varía de mayor a menor + 2.
Una solución eficiente es usar la criba de Eratóstenes :
 

  1. Cree una array booleana «prime[0..high]» e inicialice todas las entradas como verdaderas. Un valor en primo[i] finalmente será falso si i no es un número primo, de lo contrario será verdadero.
  2. Ejecute un ciclo de p = 2 a alto. 
    • Si primo[p] es verdadero, entonces p es primo.
    • Marque todos los múltiplos de p como no primos en primo[].
  3. Ejecute un ciclo de mayor a menor e imprima los primeros gemelos usando prime[] integrado en el paso 2.

C++

// C++ program to find the largest twin in given range
#include <bits/stdc++.h>
using namespace std;
 
// Function to find twins
void printTwins(int low, int high)
{
    // Create a boolean array "prime[0..high]" and initialize
    // all entries it as true. A value in prime[i] will finally
    // be false if i is Not a prime, else true.
    bool prime[high + 1], twin = false;
    memset(prime, true, sizeof(prime));
 
    prime[0] = prime[1] = false;
 
    // Look for the smallest twin
    for (int p = 2; p <= floor(sqrt(high)) + 1; p++) {
 
        // If p is not marked, then it is a prime
        if (prime[p]) {
 
            // Update all multiples of p
            for (int i = p * 2; i <= high; i += p)
                prime[i] = false;
        }
    }
 
    // Now print the largest twin in range
    for (int i = high; i >= low; i--) {
        if (prime[i] && (i - 2 >= low && prime[i - 2] == true)) {
            cout << "Largest twins in given range: ("
                 << i - 2 << ", " << i << ")";
            twin = true;
            break;
        }
    }
 
    if (twin == false)
        cout << "No such pair exists" << endl;
}
 
// Driver program
int main()
{
    printTwins(10, 100);
 
    return 0;
}

Java

// Java program to find the
// largest twin in given range
import java.io.*;
 
class GFG
{
     
// Function to find twins
static void printTwins(int low, int high)
{
    // Create a boolean array
    // "prime[0..high]" and initialize
    // all entries it as true. A value
    // in prime[i] will finally be false
    // if i is Not a prime, else true.
    boolean prime[] = new boolean[high + 1];
    boolean twin = false;
    for(int i = 0; i < high + 1; i++)
    prime[i] = true;
 
    prime[0] = prime[1] = false;
 
    // Look for the smallest twin
    for (int p = 2;
             p <= Math.floor(Math.sqrt(high)) + 1; p++)
    {
 
        // If p is not marked,
        // then it is a prime
        if (prime[p])
        {
 
            // Update all multiples of p
            for (int i = p * 2; i <= high; i += p)
                prime[i] = false;
        }
    }
 
    // Now print the largest twin in range
    for (int i = high; i >= low; i--)
    {
        if (prime[i] && (i - 2 >= low &&
            prime[i - 2] == true))
        {
            System.out.println("Largest twins in given range: (" +
                                      (i - 2) + ", " + (i) + ")");
            twin = true;
            break;
        }
    }
 
    if (twin == false)
        System.out.println("No such pair exists");
}
 
// Driver Code
public static void main (String[] args)
{
    printTwins(10, 100);
}
}
 
// This code is contributed
// by inder_verma.

Python3

# Python 3 program to find the largest twin
# in given range
 
# Function to find twins
from math import sqrt,floor
def printTwins(low, high):
     
    # Create a boolean array "prime[0..high]"
    # and initialize all entries it as true.
    # A value in prime[i] will finally
    # be false if i is Not a prime, else true.
    prime = [True for i in range(high + 1)]
    twin = False
 
    prime[0] = False
    prime[1] = False
 
    # Look for the smallest twin
    k = floor(sqrt(high)) + 2
    for p in range(2, k, 1):
         
        # If p is not marked, then it
        # is a prime
        if (prime[p]):
             
            # Update all multiples of p
            for i in range(p * 2, high + 1, p):
                prime[i] = False
         
    # Now print the largest twin in range
    i = high
    while(i >= low):
        if (prime[i] and (i - 2 >= low and
                          prime[i - 2] == True)):
            print("Largest twins in given range:(", (i - 2),   
                                             ",", (i), ")")
            twin = True
            break
             
        i -= 1
     
    if (twin == False):
        print("No such pair exists")
 
# Driver Code
if __name__ == '__main__':
    printTwins(10, 100)
 
# This code is contributed by
# Sanjit_Prasad

C#

// C# program to find the
// largest twin in given range
class GFG
{
     
// Function to find twins
static void printTwins(int low, int high)
{
    // Create a boolean array
    // "prime[0..high]" and initialize
    // all entries it as true. A value
    // in prime[i] will finally be false
    // if i is Not a prime, else true.
    bool[] prime = new bool[high + 1];
    bool twin = false;
    for(int i = 0; i < high + 1; i++)
    prime[i] = true;
 
    prime[0] = prime[1] = false;
 
    // Look for the smallest twin
    for (int p = 2;
             p <= System.Math.Floor(
                         System.Math.Sqrt(high)) + 1; p++)
    {
 
        // If p is not marked,
        // then it is a prime
        if (prime[p])
        {
 
            // Update all multiples of p
            for (int i = p * 2; i <= high; i += p)
                prime[i] = false;
        }
    }
 
    // Now print the largest twin in range
    for (int i = high; i >= low; i--)
    {
        if (prime[i] && (i - 2 >= low &&
            prime[i - 2] == true))
        {
            System.Console.WriteLine("Largest twins in given range: (" +
                                    (i - 2) + ", " + (i) + ")");
            twin = true;
            break;
        }
    }
 
    if (twin == false)
        System.Console.WriteLine("No such pair exists");
}
 
// Driver Code
public static void Main()
{
    printTwins(10, 100);
}
}
 
// This code is contributed
// by mits

PHP

<?php
//PHP  program to find the largest twin in given range
// Function to find twins
function  printTwins($low, $high)
{
    // Create a boolean array "prime[0..high]" and initialize
    // all entries it as true. A value in prime[i] will finally
    // be false if i is Not a prime, else true.
    $prime[$high + 1]=array();
    $twin = false;
    $prime = array_fill(0, ($high + 1), true);
     
    $prime[0] = $prime[1] = false;
 
    // Look for the smallest twin
    for ($p = 2; $p <= floor(sqrt($high)) + 1; $p++) {
 
        // If p is not marked, then it is a prime
        if ($prime[$p]) {
 
            // Update all multiples of p
            for ($i = $p * 2; $i <= $high; $i += $p)
                $prime[$i] = false;
        }
    }
 
    // Now print the largest twin in range
    for ($i = $high; $i >= $low; $i--) {
        if ($prime[$i] && ($i - 2 >= $low && $prime[$i - 2] == true)) {
            echo "Largest twins in given range: (",
                $i - 2 , ", " , $i , ")";
            $twin = true;
            break;
        }
    }
 
    if ($twin == false)
         echo  "No such pair exists" ;
}
 
// Driver program
 
    printTwins(10, 100);
 
#This code is contributed by ajit.
?>

Javascript

<script>
 
    // Javascript program to find the
    // largest twin in given range
     
    // Function to find twins
    function printTwins(low, high)
    {
        // Create a boolean array
        // "prime[0..high]" and initialize
        // all entries it as true. A value
        // in prime[i] will finally be false
        // if i is Not a prime, else true.
        let prime = new Array(high + 1);
        let twin = false;
        for(let i = 0; i < high + 1; i++)
            prime[i] = true;
 
        prime[0] = prime[1] = false;
 
        // Look for the smallest twin
        for (let p = 2; p <=
        Math.floor(Math.sqrt(high)) + 1; p++)
        {
 
            // If p is not marked,
            // then it is a prime
            if (prime[p])
            {
 
                // Update all multiples of p
                for (let i = p * 2; i <= high; i += p)
                    prime[i] = false;
            }
        }
 
        // Now print the largest twin in range
        for (let i = high; i >= low; i--)
        {
            if (prime[i] && (i - 2 >= low &&
            prime[i - 2] == true))
            {
                document.write(
                "Largest twins in given range: (" +
                (i - 2) + ", " + (i) + ")" + "</br>"
                );
                twin = true;
                break;
            }
        }
 
        if (twin == false)
            document.write("No such pair exists");
    }
     
    printTwins(10, 100);
                                  
</script>
Producción: 

Largest twins in given range: (71, 73)

 

Publicación traducida automáticamente

Artículo escrito por IshitaBhuiya1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *