Dado un gráfico dirigido y fuertemente conectado con pesos de borde no negativos. Definimos el peso medio de un ciclo como la suma de todos los pesos de los bordes del ciclo dividido por el no. de bordes Nuestra tarea es encontrar el peso medio mínimo entre todos los ciclos dirigidos del gráfico.
Ejemplo:
Input : Below Graph
Output : 1.66667
Método para encontrar el ciclo de valor de peso medio más pequeño de manera eficiente
Step 1: Choose first vertex as source. Step 2: Compute the shortest path to all other vertices on a path consisting of k edges 0 <= k <= V where V is number of vertices. This is a simple dp problem which can be computed by the recursive solution dp[k][v] = min(dp[k][v], dp[k-1][u] + weight(u,v) where v is the destination and the edge(u,v) should belong to E Step 3: For each vertex calculate max(dp[n][v]-dp[k][v])/(n-k) where 0<=k<=n-1 Step 4: The minimum of the values calculated above is the required answer.
Consulte la solución del problema 9.2 aquí para comprobar que los pasos anteriores encuentran el peso promedio mínimo.
Implementación:
C++
// C++ program to find minimum average // weight of a cycle in connected and // directed graph. #include<bits/stdc++.h> using namespace std; const int V = 4; // a struct to represent edges struct edge { int from, weight; }; // vector to store edges vector <edge> edges[V]; void addedge(int u,int v,int w) { edges[v].push_back({u, w}); } // calculates the shortest path void shortestpath(int dp[][V]) { // initializing all distances as -1 for (int i=0; i<=V; i++) for (int j=0; j<V; j++) dp[i][j] = -1; // shortest distance from first vertex // to in itself consisting of 0 edges dp[0][0] = 0; // filling up the dp table for (int i=1; i<=V; i++) { for (int j=0; j<V; j++) { for (int k=0; k<edges[j].size(); k++) { if (dp[i-1][edges[j][k].from] != -1) { int curr_wt = dp[i-1][edges[j][k].from] + edges[j][k].weight; if (dp[i][j] == -1) dp[i][j] = curr_wt; else dp[i][j] = min(dp[i][j], curr_wt); } } } } } // Returns minimum value of average weight of a // cycle in graph. double minAvgWeight() { int dp[V+1][V]; shortestpath(dp); // array to store the avg values double avg[V]; for (int i=0; i<V; i++) avg[i] = -1; // Compute average values for all vertices using // weights of shortest paths store in dp. for (int i=0; i<V; i++) { if (dp[V][i] != -1) { for (int j=0; j<V; j++) if (dp[j][i] != -1) avg[i] = max(avg[i], ((double)dp[V][i]-dp[j][i])/(V-j)); } } // Find minimum value in avg[] double result = avg[0]; for (int i=0; i<V; i++) if (avg[i] != -1 && avg[i] < result) result = avg[i]; return result; } // Driver function int main() { addedge(0, 1, 1); addedge(0, 2, 10); addedge(1, 2, 3); addedge(2, 3, 2); addedge(3, 1, 0); addedge(3, 0, 8); cout << minAvgWeight(); return 0; }
Java
// Java program to find minimum average // weight of a cycle in connected and // directed graph. import java.io.*; import java.util.*; class GFG { static int V = 4; // a struct to represent edges static class Edge { int from, weight; Edge(int from, int weight) { this.from = from; this.weight = weight; } } // vector to store edges //@SuppressWarnings("unchecked") static Vector<Edge>[] edges = new Vector[V]; static { for (int i = 0; i < V; i++) edges[i] = new Vector<>(); } static void addedge(int u, int v, int w) { edges[v].add(new Edge(u, w)); } // calculates the shortest path static void shortestpath(int[][] dp) { // initializing all distances as -1 for (int i = 0; i <= V; i++) for (int j = 0; j < V; j++) dp[i][j] = -1; // shortest distance from first vertex // to in itself consisting of 0 edges dp[0][0] = 0; // filling up the dp table for (int i = 1; i <= V; i++) { for (int j = 0; j < V; j++) { for (int k = 0; k < edges[j].size(); k++) { if (dp[i - 1][edges[j].elementAt(k).from] != -1) { int curr_wt = dp[i - 1][edges[j].elementAt(k).from] + edges[j].elementAt(k).weight; if (dp[i][j] == -1) dp[i][j] = curr_wt; else dp[i][j] = Math.min(dp[i][j], curr_wt); } } } } } // Returns minimum value of average weight // of a cycle in graph. static double minAvgWeight() { int[][] dp = new int[V + 1][V]; shortestpath(dp); // array to store the avg values double[] avg = new double[V]; for (int i = 0; i < V; i++) avg[i] = -1; // Compute average values for all vertices using // weights of shortest paths store in dp. for (int i = 0; i < V; i++) { if (dp[V][i] != -1) { for (int j = 0; j < V; j++) if (dp[j][i] != -1) avg[i] = Math.max(avg[i], ((double) dp[V][i] - dp[j][i]) / (V - j)); } } // Find minimum value in avg[] double result = avg[0]; for (int i = 0; i < V; i++) if (avg[i] != -1 && avg[i] < result) result = avg[i]; return result; } // Driver Code public static void main(String[] args) { addedge(0, 1, 1); addedge(0, 2, 10); addedge(1, 2, 3); addedge(2, 3, 2); addedge(3, 1, 0); addedge(3, 0, 8); System.out.printf("%.5f", minAvgWeight()); } } // This code is contributed by // sanjeev2552
Python3
# Python3 program to find minimum # average weight of a cycle in # connected and directed graph. # a struct to represent edges class edge: def __init__(self, u, w): self.From = u self.weight = w def addedge(u, v, w): edges[v].append(edge(u, w)) # calculates the shortest path def shortestpath(dp): # initializing all distances as -1 for i in range(V + 1): for j in range(V): dp[i][j] = -1 # shortest distance From first vertex # to in itself consisting of 0 edges dp[0][0] = 0 # filling up the dp table for i in range(1, V + 1): for j in range(V): for k in range(len(edges[j])): if (dp[i - 1][edges[j][k].From] != -1): curr_wt = (dp[i - 1][edges[j][k].From] + edges[j][k].weight) if (dp[i][j] == -1): dp[i][j] = curr_wt else: dp[i][j] = min(dp[i][j], curr_wt) # Returns minimum value of average # weight of a cycle in graph. def minAvgWeight(): dp = [[None] * V for i in range(V + 1)] shortestpath(dp) # array to store the avg values avg = [-1] * V # Compute average values for all # vertices using weights of # shortest paths store in dp. for i in range(V): if (dp[V][i] != -1): for j in range(V): if (dp[j][i] != -1): avg[i] = max(avg[i], (dp[V][i] - dp[j][i]) / (V - j)) # Find minimum value in avg[] result = avg[0] for i in range(V): if (avg[i] != -1 and avg[i] < result): result = avg[i] return result # Driver Code V = 4 # vector to store edges edges = [[] for i in range(V)] addedge(0, 1, 1) addedge(0, 2, 10) addedge(1, 2, 3) addedge(2, 3, 2) addedge(3, 1, 0) addedge(3, 0, 8) print(minAvgWeight()) # This code is contributed by Pranchalk
C#
// C# program to find minimum // average weight of a cycle // in connected and directed graph. using System; using System.Collections.Generic; class GFG{ static int V = 4; // a struct to represent // edges public class Edge { public int from, weight; public Edge(int from, int weight) { this.from = from; this.weight = weight; } } // vector to store edges static List<Edge>[] edges = new List<Edge>[V]; static void addedge(int u, int v, int w) { edges[v].Add(new Edge(u, w)); } // calculates the shortest path static void shortestpath(int[,] dp) { // initializing all distances // as -1 for (int i = 0; i <= V; i++) for (int j = 0; j < V; j++) dp[i, j] = -1; // shortest distance from // first vertex to in itself // consisting of 0 edges dp[0, 0] = 0; // filling up the dp table for (int i = 1; i <= V; i++) { for (int j = 0; j < V; j++) { for (int k = 0; k < edges[j].Count; k++) { if (dp[i - 1, edges[j][k].from] != -1) { int curr_wt = dp[i - 1, edges[j][k].from] + edges[j][k].weight; if (dp[i, j] == -1) dp[i, j] = curr_wt; else dp[i, j] = Math.Min(dp[i, j], curr_wt); } } } } } // Returns minimum value of // average weight of a cycle // in graph. static double minAvgWeight() { int[,] dp = new int[V + 1, V]; shortestpath(dp); // array to store the // avg values double[] avg = new double[V]; for (int i = 0; i < V; i++) avg[i] = -1; // Compute average values for // all vertices using weights // of shortest paths store in dp. for (int i = 0; i < V; i++) { if (dp[V, i] != -1) { for (int j = 0; j < V; j++) if (dp[j, i] != -1) avg[i] = Math.Max(avg[i], ((double) dp[V, i] - dp[j, i]) / (V - j)); } } // Find minimum value in avg[] double result = avg[0]; for (int i = 0; i < V; i++) if (avg[i] != -1 && avg[i] < result) result = avg[i]; return result; } // Driver Code public static void Main(String[] args) { for (int i = 0; i < V; i++) edges[i] = new List<Edge>(); addedge(0, 1, 1); addedge(0, 2, 10); addedge(1, 2, 3); addedge(2, 3, 2); addedge(3, 1, 0); addedge(3, 0, 8); Console.Write("{0:F5}", minAvgWeight()); } } // This code is contributed by Princi Singh
Javascript
<script> // JavaScript program to find minimum // average weight of a cycle // in connected and directed graph. var V = 4; // a struct to represent // edges class Edge { constructor(from, weight) { this.from = from; this.weight = weight; } } // vector to store edges var edges = Array.from(Array(V), ()=>Array()); function addedge(u, v, w) { edges[v].push(new Edge(u, w)); } // calculates the shortest path function shortestpath(dp) { // initializing all distances // as -1 for (var i = 0; i <= V; i++) for (var j = 0; j < V; j++) dp[i][j] = -1; // shortest distance from // first vertex to in itself // consisting of 0 edges dp[0][0] = 0; // filling up the dp table for (var i = 1; i <= V; i++) { for (var j = 0; j < V; j++) { for (var k = 0; k < edges[j].length; k++) { if (dp[i - 1][ edges[j][k].from] != -1) { var curr_wt = dp[i - 1][ edges[j][k].from] + edges[j][k].weight; if (dp[i][j] == -1) dp[i][j] = curr_wt; else dp[i][j] = Math.min(dp[i][j], curr_wt); } } } } } // Returns minimum value of // average weight of a cycle // in graph. function minAvgWeight() { var dp = Array.from(Array(V+1), ()=>Array(V).fill(0)) shortestpath(dp); // array to store the // avg values var avg = Array(V).fill(0); for (var i = 0; i < V; i++) avg[i] = -1; // Compute average values for // all vertices using weights // of shortest paths store in dp. for (var i = 0; i < V; i++) { if (dp[V][i] != -1) { for (var j = 0; j < V; j++) if (dp[j][i] != -1) avg[i] = Math.max(avg[i], ( dp[V][i] - dp[j][i]) / (V - j)); } } // Find minimum value in avg[] var result = avg[0]; for (var i = 0; i < V; i++) if (avg[i] != -1 && avg[i] < result) result = avg[i]; return result; } // Driver Code addedge(0, 1, 1); addedge(0, 2, 10); addedge(1, 2, 3); addedge(2, 3, 2); addedge(3, 1, 0); addedge(3, 0, 8); document.write(minAvgWeight().toFixed(5)); </script>
1.66667
Aquí, el gráfico sin ciclo devolverá el valor como -1.
Este artículo es una contribución de Ayush Jha . Si te gusta GeeksforGeeks y te gustaría contribuir, también puedes escribir un artículo usando write.geeksforgeeks.org o enviar tu artículo por correo a review-team@geeksforgeeks.org. Vea su artículo que aparece en la página principal de GeeksforGeeks y ayude a otros Geeks.
Publicación traducida automáticamente
Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA