Algoritmo de Floyd Warshall | DP-16 – Part 1

 

El algoritmo de Floyd Warshall es para resolver el problema de la ruta más corta de todos los pares. El problema es encontrar las distancias más cortas entre cada par de vértices en un gráfico dirigido ponderado de borde dado. 
Ejemplo: 

Input:
       graph[][] = { {0,   5,  INF, 10},
                    {INF,  0,  3,  INF},
                    {INF, INF, 0,   1},
                    {INF, INF, INF, 0} }
which represents the following graph
             10
       (0)------->(3)
        |         /|\
      5 |          |
        |          | 1
       \|/         |
       (1)------->(2)
            3       
Note that the value of graph[i][j] is 0 if i is equal to j 
And graph[i][j] is INF (infinite) if there is no edge from vertex i to j.

Output:
Shortest distance matrix
      0      5      8      9
    INF      0      3      4
    INF    INF      0      1
    INF    INF    INF      0

Algoritmo de Floyd Warshall 
Inicializamos la array de solución igual que la array del gráfico de entrada como primer paso. Luego actualizamos la array solución considerando todos los vértices como un vértice intermedio. La idea es elegir uno por uno todos los vértices y actualizar todos los caminos más cortos que incluyen el vértice elegido como un vértice intermedio en el camino más corto. Cuando elegimos el vértice número k como vértice intermedio, ya hemos considerado los vértices {0, 1, 2, .. k-1} como vértices intermedios. Para cada par (i, j) de los vértices de origen y destino respectivamente, hay dos casos posibles. 
1) k no es un vértice intermedio en el camino más corto de i a j. Mantenemos el valor de dist[i][j] como está. 
2)k es un vértice intermedio en el camino más corto de i a j. Actualizamos el valor de dist[i][j] como dist[i][k] + dist[k][j] si dist[i][j] > dist[i][k] + dist[k][ j]
La siguiente figura muestra la propiedad de subestructura óptima anterior en el problema del camino más corto de todos los pares.
 

Floyd Warshall Algorithm

A continuación se muestran las implementaciones del algoritmo Floyd Warshall. 

C++

// C++ Program for Floyd Warshall Algorithm
#include <bits/stdc++.h>
using namespace std;
 
// Number of vertices in the graph
#define V 4
 
/* Define Infinite as a large enough
value.This value will be used for
vertices not connected to each other */
#define INF 99999
 
// A function to print the solution matrix
void printSolution(int dist[][V]);
 
// Solves the all-pairs shortest path
// problem using Floyd Warshall algorithm
void floydWarshall(int graph[][V])
{
    /* dist[][] will be the output matrix
    that will finally have the shortest
    distances between every pair of vertices */
    int dist[V][V], i, j, k;
 
    /* Initialize the solution matrix same
    as input graph matrix. Or we can say
    the initial values of shortest distances
    are based on shortest paths considering
    no intermediate vertex. */
    for (i = 0; i < V; i++)
        for (j = 0; j < V; j++)
            dist[i][j] = graph[i][j];
 
    /* Add all vertices one by one to
    the set of intermediate vertices.
    ---> Before start of an iteration,
    we have shortest distances between all
    pairs of vertices such that the
    shortest distances consider only the
    vertices in set {0, 1, 2, .. k-1} as
    intermediate vertices.
    ----> After the end of an iteration,
    vertex no. k is added to the set of
    intermediate vertices and the set becomes {0, 1, 2, ..
    k} */
    for (k = 0; k < V; k++) {
        // Pick all vertices as source one by one
        for (i = 0; i < V; i++) {
            // Pick all vertices as destination for the
            // above picked source
            for (j = 0; j < V; j++) {
                // If vertex k is on the shortest path from
                // i to j, then update the value of
                // dist[i][j]
                if (dist[i][j] > (dist[i][k] + dist[k][j])
                    && (dist[k][j] != INF
                        && dist[i][k] != INF))
                    dist[i][j] = dist[i][k] + dist[k][j];
            }
        }
    }
 
    // Print the shortest distance matrix
    printSolution(dist);
}
 
/* A utility function to print solution */
void printSolution(int dist[][V])
{
    cout << "The following matrix shows the shortest "
            "distances"
            " between every pair of vertices \n";
    for (int i = 0; i < V; i++) {
        for (int j = 0; j < V; j++) {
            if (dist[i][j] == INF)
                cout << "INF"
                     << "     ";
            else
                cout << dist[i][j] << "     ";
        }
        cout << endl;
    }
}
 
// Driver code
int main()
{
    /* Let us create the following weighted graph
            10
    (0)------->(3)
        |     /|\
    5 |     |
        |     | 1
    \|/     |
    (1)------->(2)
            3     */
    int graph[V][V] = { { 0, 5, INF, 10 },
                        { INF, 0, 3, INF },
                        { INF, INF, 0, 1 },
                        { INF, INF, INF, 0 } };
 
    // Print the solution
    floydWarshall(graph);
    return 0;
}
 
// This code is contributed by Mythri J L

C

// C Program for Floyd Warshall Algorithm
#include<stdio.h>
 
// Number of vertices in the graph
#define V 4
 
/* Define Infinite as a large enough
  value. This value will be used
  for vertices not connected to each other */
#define INF 99999
 
// A function to print the solution matrix
void printSolution(int dist[][V]);
 
// Solves the all-pairs shortest path
// problem using Floyd Warshall algorithm
void floydWarshall (int graph[][V])
{
    /* dist[][] will be the output matrix
      that will finally have the shortest
      distances between every pair of vertices */
    int dist[V][V], i, j, k;
 
    /* Initialize the solution matrix
      same as input graph matrix. Or
       we can say the initial values of
       shortest distances are based
       on shortest paths considering no
       intermediate vertex. */
    for (i = 0; i < V; i++)
        for (j = 0; j < V; j++)
            dist[i][j] = graph[i][j];
 
    /* Add all vertices one by one to
      the set of intermediate vertices.
      ---> Before start of an iteration, we
      have shortest distances between all
      pairs of vertices such that the shortest
      distances consider only the
      vertices in set {0, 1, 2, .. k-1} as
      intermediate vertices.
      ----> After the end of an iteration,
      vertex no. k is added to the set of
      intermediate vertices and the set
      becomes {0, 1, 2, .. k} */
    for (k = 0; k < V; k++)
    {
        // Pick all vertices as source one by one
        for (i = 0; i < V; i++)
        {
            // Pick all vertices as destination for the
            // above picked source
            for (j = 0; j < V; j++)
            {
                // If vertex k is on the shortest path from
                // i to j, then update the value of dist[i][j]
                if (dist[i][k] + dist[k][j] < dist[i][j])
                    dist[i][j] = dist[i][k] + dist[k][j];
            }
        }
    }
 
    // Print the shortest distance matrix
    printSolution(dist);
}
 
/* A utility function to print solution */
void printSolution(int dist[][V])
{
    printf ("The following matrix shows the shortest distances"
            " between every pair of vertices \n");
    for (int i = 0; i < V; i++)
    {
        for (int j = 0; j < V; j++)
        {
            if (dist[i][j] == INF)
                printf("%7s", "INF");
            else
                printf ("%7d", dist[i][j]);
        }
        printf("\n");
    }
}
 
// driver program to test above function
int main()
{
    /* Let us create the following weighted graph
            10
       (0)------->(3)
        |         /|\
      5 |          |
        |          | 1
       \|/         |
       (1)------->(2)
            3           */
    int graph[V][V] = { {0,   5,  INF, 10},
                        {INF, 0,   3, INF},
                        {INF, INF, 0,   1},
                        {INF, INF, INF, 0}
                      };
 
    // Print the solution
    floydWarshall(graph);
    return 0;
}

Java

// A Java program for Floyd Warshall All Pairs Shortest
// Path algorithm.
import java.util.*;
import java.lang.*;
import java.io.*;
 
 
class AllPairShortestPath
{
    final static int INF = 99999, V = 4;
 
    void floydWarshall(int graph[][])
    {
        int dist[][] = new int[V][V];
        int i, j, k;
 
        /* Initialize the solution matrix
           same as input graph matrix.
           Or we can say the initial values
           of shortest distances
           are based on shortest paths
           considering no intermediate
           vertex. */
        for (i = 0; i < V; i++)
            for (j = 0; j < V; j++)
                dist[i][j] = graph[i][j];
 
        /* Add all vertices one by one
           to the set of intermediate
           vertices.
          ---> Before start of an iteration,
               we have shortest
               distances between all pairs
               of vertices such that
               the shortest distances consider
               only the vertices in
               set {0, 1, 2, .. k-1} as
               intermediate vertices.
          ----> After the end of an iteration,
                vertex no. k is added
                to the set of intermediate
                vertices and the set
                becomes {0, 1, 2, .. k} */
        for (k = 0; k < V; k++)
        {
            // Pick all vertices as source one by one
            for (i = 0; i < V; i++)
            {
                // Pick all vertices as destination for the
                // above picked source
                for (j = 0; j < V; j++)
                {
                    // If vertex k is on the shortest path from
                    // i to j, then update the value of dist[i][j]
                    if (dist[i][k] + dist[k][j] < dist[i][j])
                        dist[i][j] = dist[i][k] + dist[k][j];
                }
            }
        }
 
        // Print the shortest distance matrix
        printSolution(dist);
    }
 
    void printSolution(int dist[][])
    {
        System.out.println("The following matrix shows the shortest "+
                         "distances between every pair of vertices");
        for (int i=0; i<V; ++i)
        {
            for (int j=0; j<V; ++j)
            {
                if (dist[i][j]==INF)
                    System.out.print("INF ");
                else
                    System.out.print(dist[i][j]+"   ");
            }
            System.out.println();
        }
    }
 
    // Driver program to test above function
    public static void main (String[] args)
    {
        /* Let us create the following weighted graph
           10
        (0)------->(3)
        |         /|\
        5 |          |
        |          | 1
        \|/         |
        (1)------->(2)
           3           */
        int graph[][] = { {0,   5,  INF, 10},
                          {INF, 0,   3, INF},
                          {INF, INF, 0,   1},
                          {INF, INF, INF, 0}
                        };
        AllPairShortestPath a = new AllPairShortestPath();
 
        // Print the solution
        a.floydWarshall(graph);
    }
}
 
// Contributed by Aakash Hasija

Python3

# Python Program for Floyd Warshall Algorithm
 
# Number of vertices in the graph
V = 4
 
# Define infinity as the large
# enough value. This value will be
# used for vertices not connected to each other
INF = 99999
 
# Solves all pair shortest path
# via Floyd Warshall Algorithm
 
def floydWarshall(graph):
   
    """ dist[][] will be the output
       matrix that will finally
        have the shortest distances
        between every pair of vertices """
    """ initializing the solution matrix
    same as input graph matrix
    OR we can say that the initial
    values of shortest distances
    are based on shortest paths considering no
    intermediate vertices """
 
    dist = list(map(lambda i: list(map(lambda j: j, i)), graph))
 
    """ Add all vertices one by one
    to the set of intermediate
     vertices.
     ---> Before start of an iteration,
     we have shortest distances
     between all pairs of vertices
     such that the shortest
     distances consider only the
     vertices in the set
    {0, 1, 2, .. k-1} as intermediate vertices.
      ----> After the end of a
      iteration, vertex no. k is
     added to the set of intermediate
     vertices and the
    set becomes {0, 1, 2, .. k}
    """
    for k in range(V):
 
        # pick all vertices as source one by one
        for i in range(V):
 
            # Pick all vertices as destination for the
            # above picked source
            for j in range(V):
 
                # If vertex k is on the shortest path from
                # i to j, then update the value of dist[i][j]
                dist[i][j] = min(dist[i][j],
                                 dist[i][k] + dist[k][j]
                                 )
    printSolution(dist)
 
 
# A utility function to print the solution
def printSolution(dist):
    print ("Following matrix shows the shortest distances\
 between every pair of vertices")
    for i in range(V):
        for j in range(V):
            if(dist[i][j] == INF):
                print ("%7s" % ("INF"),end=" ")
            else:
                print ("%7d\t" % (dist[i][j]),end=' ')
            if j == V-1:
                print ()
 
 
# Driver program to test the above program
# Let us create the following weighted graph
"""
            10
       (0)------->(3)
        |         /|\
      5 |          |
        |          | 1
       \|/         |
       (1)------->(2)
            3           """
graph = [[0, 5, INF, 10],
         [INF, 0, 3, INF],
         [INF, INF, 0,   1],
         [INF, INF, INF, 0]
         ]
# Print the solution
floydWarshall(graph)
# This code is contributed by Mythri J L

C#

// A C# program for Floyd Warshall All
// Pairs Shortest Path algorithm.
 
using System;
 
public class AllPairShortestPath
{
    readonly static int INF = 99999, V = 4;
 
    void floydWarshall(int[,] graph)
    {
        int[,] dist = new int[V, V];
        int i, j, k;
 
        // Initialize the solution matrix
        // same as input graph matrix
        // Or we can say the initial
        // values of shortest distances
        // are based on shortest paths
        // considering no intermediate
        // vertex
        for (i = 0; i < V; i++) {
            for (j = 0; j < V; j++) {
                dist[i, j] = graph[i, j];
            }
        }
 
        /* Add all vertices one by one to
        the set of intermediate vertices.
        ---> Before start of a iteration,
             we have shortest distances
             between all pairs of vertices
             such that the shortest distances
             consider only the vertices in
             set {0, 1, 2, .. k-1} as
             intermediate vertices.
        ---> After the end of a iteration,
             vertex no. k is added
             to the set of intermediate
             vertices and the set
             becomes {0, 1, 2, .. k} */
        for (k = 0; k < V; k++)
        {
            // Pick all vertices as source
            // one by one
            for (i = 0; i < V; i++)
            {
                // Pick all vertices as destination
                // for the above picked source
                for (j = 0; j < V; j++)
                {
                    // If vertex k is on the shortest
                    // path from i to j, then update
                    // the value of dist[i][j]
                    if (dist[i, k] + dist[k, j] < dist[i, j])
                    {
                        dist[i, j] = dist[i, k] + dist[k, j];
                    }
                }
            }
        }
 
        // Print the shortest distance matrix
        printSolution(dist);
    }
 
    void printSolution(int[,] dist)
    {
        Console.WriteLine("Following matrix shows the shortest "+
                        "distances between every pair of vertices");
        for (int i = 0; i < V; ++i)
        {
            for (int j = 0; j < V; ++j)
            {
                if (dist[i, j] == INF) {
                    Console.Write("INF ");
                } else {
                    Console.Write(dist[i, j] + " ");
                }
            }
             
            Console.WriteLine();
        }
    }
 
    // Driver Code
    public static void Main(string[] args)
    {
        /* Let us create the following
           weighted graph
              10
        (0)------->(3)
        |         /|\
        5 |         |
        |         | 1
        \|/         |
        (1)------->(2)
             3             */
        int[,] graph = { {0, 5, INF, 10},
                        {INF, 0, 3, INF},
                        {INF, INF, 0, 1},
                        {INF, INF, INF, 0}
                        };
         
        AllPairShortestPath a = new AllPairShortestPath();
 
        // Print the solution
        a.floydWarshall(graph);
    }
}
 
// This article is contributed by
// Abdul Mateen Mohammed

PHP

<?php
// PHP Program for Floyd Warshall Algorithm
 
// Solves the all-pairs shortest path problem
// using Floyd Warshall algorithm
function floydWarshall ($graph, $V, $INF)
{
    /* dist[][] will be the output matrix
    that will finally have the shortest
    distances between every pair of vertices */
    $dist = array(array(0,0,0,0),
                  array(0,0,0,0),
                  array(0,0,0,0),
                  array(0,0,0,0));
 
    /* Initialize the solution matrix same
    as input graph matrix. Or we can say the
    initial values of shortest distances are
    based on shortest paths considering no
    intermediate vertex. */
    for ($i = 0; $i < $V; $i++)
        for ($j = 0; $j < $V; $j++)
            $dist[$i][$j] = $graph[$i][$j];
 
    /* Add all vertices one by one to the set
    of intermediate vertices.
    ---> Before start of an iteration, we have
    shortest distances between all pairs of
    vertices such that the shortest distances
    consider only the vertices in set
    {0, 1, 2, .. k-1} as intermediate vertices.
    ----> After the end of an iteration, vertex
    no. k is added to the set of intermediate
    vertices and the set becomes {0, 1, 2, .. k} */
    for ($k = 0; $k < $V; $k++)
    {
        // Pick all vertices as source one by one
        for ($i = 0; $i < $V; $i++)
        {
            // Pick all vertices as destination
            // for the above picked source
            for ($j = 0; $j < $V; $j++)
            {
                // If vertex k is on the shortest path from
                // i to j, then update the value of dist[i][j]
                if ($dist[$i][$k] + $dist[$k][$j] <
                                    $dist[$i][$j])
                    $dist[$i][$j] = $dist[$i][$k] +
                                    $dist[$k][$j];
            }
        }
    }
 
    // Print the shortest distance matrix
    printSolution($dist, $V, $INF);
}
 
/* A utility function to print solution */
function printSolution($dist, $V, $INF)
{
    echo "The following matrix shows the " .
             "shortest distances between " .
                "every pair of vertices \n";
    for ($i = 0; $i < $V; $i++)
    {
        for ($j = 0; $j < $V; $j++)
        {
            if ($dist[$i][$j] == $INF)
                echo "INF " ;
            else
                echo $dist[$i][$j], " ";
        }
        echo "\n";
    }
}
 
// Driver Code
 
// Number of vertices in the graph
$V = 4 ;
 
/* Define Infinite as a large enough
value. This value will be used for
vertices not connected to each other */
$INF = 99999 ;
 
/* Let us create the following weighted graph
        10
(0)------->(3)
    |     /|\
5 |     |
    |     | 1
\|/     |
(1)------->(2)
        3     */
$graph = array(array(0, 5, $INF, 10),
               array($INF, 0, 3, $INF),
               array($INF, $INF, 0, 1),
               array($INF, $INF, $INF, 0));
 
// Print the solution
floydWarshall($graph, $V, $INF);
 
// This code is contributed by Ryuga
?>

Javascript

<script>
      // A JavaScript program for Floyd Warshall All
      // Pairs Shortest Path algorithm.
 
      var INF = 99999;
      class AllPairShortestPath {
        constructor() {
          this.V = 4;
        }
 
        floydWarshall(graph) {
          var dist = Array.from(Array(this.V), () => new Array(this.V).fill(0));
          var i, j, k;
 
          // Initialize the solution matrix
          // same as input graph matrix
          // Or we can say the initial
          // values of shortest distances
          // are based on shortest paths
          // considering no intermediate
          // vertex
          for (i = 0; i < this.V; i++) {
            for (j = 0; j < this.V; j++) {
              dist[i][j] = graph[i][j];
            }
          }
 
          /* Add all vertices one by one to
        the set of intermediate vertices.
        ---> Before start of a iteration,
            we have shortest distances
            between all pairs of vertices
            such that the shortest distances
            consider only the vertices in
            set {0, 1, 2, .. k-1} as
            intermediate vertices.
        ---> After the end of a iteration,
            vertex no. k is added
            to the set of intermediate
            vertices and the set
            becomes {0, 1, 2, .. k} */
          for (k = 0; k < this.V; k++) {
            // Pick all vertices as source
            // one by one
            for (i = 0; i < this.V; i++) {
              // Pick all vertices as destination
              // for the above picked source
              for (j = 0; j < this.V; j++) {
                // If vertex k is on the shortest
                // path from i to j, then update
                // the value of dist[i][j]
                if (dist[i][k] + dist[k][j] < dist[i][j]) {
                  dist[i][j] = dist[i][k] + dist[k][j];
                }
              }
            }
          }
 
          // Print the shortest distance matrix
          this.printSolution(dist);
        }
 
        printSolution(dist) {
          document.write(
            "Following matrix shows the shortest " +
              "distances between every pair of vertices<br>"
          );
          for (var i = 0; i < this.V; ++i) {
            for (var j = 0; j < this.V; ++j) {
              if (dist[i][j] == INF) {
                document.write(" INF ");
              } else {
                document.write("  " + dist[i][j] + " ");
              }
            }
 
            document.write("<br>");
          }
        }
      }
      // Driver Code
      /* Let us create the following
        weighted graph
            10
        (0)------->(3)
        |         /|\
        5 |         |
        |         | 1
        \|/         |
        (1)------->(2)
            3             */
      var graph = [
        [0, 5, INF, 10],
        [INF, 0, 3, INF],
        [INF, INF, 0, 1],
        [INF, INF, INF, 0],
      ];
 
      var a = new AllPairShortestPath();
 
      // Print the solution
      a.floydWarshall(graph);
       
      // This code is contributed by rdtaank.
    </script>

Producción: 

Following matrix shows the shortest distances between every pair of vertices
      0      5      8      9
    INF      0      3      4
    INF    INF      0      1
    INF    INF    INF      0

Complejidad del Tiempo: O(V 3 )

Espacio Auxiliar: O(V 2 )
El programa anterior solo imprime las distancias más cortas. Podemos modificar la solución para imprimir las rutas más cortas también almacenando la información del predecesor en una array 2D separada. 
Además, el valor de INF se puede tomar como INT_MAX de los límites.h para asegurarnos de que manejamos el valor máximo posible. Cuando tomamos INF como INT_MAX, necesitamos cambiar la condición if en el programa anterior para evitar el desbordamiento aritmético. 

#include 

#define INF INT_MAX
..........................
if ( dist[i][k] != INF && 
     dist[k][j] != INF && 
     dist[i][k] + dist[k][j] < dist[i][j]
    )
 dist[i][j] = dist[i][k] + dist[k][j];
...........................

Escriba comentarios si encuentra algo incorrecto o si desea compartir más información sobre el tema tratado anteriormente.

Publicación traducida automáticamente

Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *