Dadas 8 monedas idénticas de las cuales una moneda es pesada y una balanza de platillo . ¿Cuántas medidas mínimas se necesitan para encontrar la moneda pesada?
(A) 2
(B) 3
(C) 4
(D) 7
Respuesta: (A)
Explicación:
Divide the coins into three groups and name the coins according to there group: A: A1, A2, A3 B: B1, B2, B3 C: C1, C2 Measure group A and group B. Two cases arise: 1. They are equal. One more measurement is needed to find the heavy coin in group C. Total two measurements needed in this case. 2. They are not equal. Find the heavy group, say A. Pick any two coins from this group, say A1 and A3. Measure A1 and A3 in the pan balance. Two cases arise: 2.1 They are equal. A2 is the heavy coin. Total two measurements needed. 2.2 They are not equal. It is known which of A1 or A3 is heavy. Total two measurements needed. So, the above observations says that in any case, 2 measurements are enough to find the heavy coin. Follow up: Generalize the minimum number of measurements for n coins with one coin heavy.
Publicación traducida automáticamente
Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA