Aplanar BST a lista ordenada | Orden decreciente

Dado un árbol de búsqueda binario, la tarea es aplanarlo en una lista ordenada en orden decreciente. Precisamente, el valor de cada Node debe ser mayor que los valores de todos los Nodes a su derecha, y su Node izquierdo debe ser NULL después del aplanamiento. Debemos hacerlo en O(H) espacio extra donde ‘H’ es la altura de BST.

Ejemplos: 

Input: 
          5 
        /   \ 
       3     7 
      / \   / \ 
     2   4 6   8
Output: 8 7 6 5 4 3 2

Input:
      1
       \
        2
         \
          3
           \
            4
             \
              5
Output: 5 4 3 2 1

Enfoque: un enfoque simple será recrear el BST a partir de su recorrido ‘en orden inverso’. Esto tomará O(N) espacio extra donde N es el número de Nodes en BST. 
Para mejorar eso, simularemos el recorrido inverso en orden de un árbol binario de la siguiente manera:  

  1. Cree un Node ficticio.
  2. Cree una variable llamada ‘prev’ y haga que apunte al Node ficticio.
  3. Realice un recorrido inverso en orden y en cada paso. 
    • Establecer anterior -> derecha = actual
    • Establecer anterior -> izquierda = NULL
    • Establecer anterior = actual

Esto mejorará la complejidad del espacio a O(H) en el peor de los casos, ya que el recorrido en orden requiere espacio adicional de O(H).

A continuación se muestra la implementación del enfoque anterior: 

C++

// C++ implementation of the
// above approach
#include <bits/stdc++.h>
using namespace std;
 
// Node of the binary tree
struct node {
    int data;
    node* left;
    node* right;
    node(int data)
    {
        this->data = data;
        left = NULL;
        right = NULL;
    }
};
 
// Function to print flattened
// binary tree
void print(node* parent)
{
    node* curr = parent;
    while (curr != NULL)
        cout << curr->data << " ", curr = curr->right;
}
 
// Function to perform reverse in-order traversal
void revInorder(node* curr, node*& prev)
{
    // Base case
    if (curr == NULL)
        return;
    revInorder(curr->right, prev);
    prev->left = NULL;
    prev->right = curr;
    prev = curr;
    revInorder(curr->left, prev);
}
 
// Function to flatten binary tree using
// level order traversal
node* flatten(node* parent)
{
 
    // Dummy node
    node* dummy = new node(-1);
 
    // Pointer to previous element
    node* prev = dummy;
 
    // Calling in-order traversal
    revInorder(parent, prev);
 
    prev->left = NULL;
    prev->right = NULL;
    node* ret = dummy->right;
 
    // Delete dummy node
    delete dummy;
    return ret;
}
 
// Driver code
int main()
{
    node* root = new node(5);
    root->left = new node(3);
    root->right = new node(7);
    root->left->left = new node(2);
    root->left->right = new node(4);
    root->right->left = new node(6);
    root->right->right = new node(8);
 
    // Calling required function
    print(flatten(root));
 
    return 0;
}

Java

// Java implementation of the
// above approach
import java.util.*;
class GFG{
 
// Node of the binary tree
static class node
{
  int data;
  node left;
  node right;
   
  node(int data)
  {
    this.data = data;
    left = null;
    right = null;
  }
};
 
// Function to print flattened
// binary tree
static void print(node parent)
{
  node curr = parent;
  while (curr != null)
  {
    System.out.print(curr.data + " ");
    curr = curr.right;
  }
}
 
static  node prev;
   
// Function to perform reverse
// in-order traversal
static void revInorder(node curr)
{
  // Base case
  if (curr == null)
    return;
  revInorder(curr.right);
  prev.left = null;
  prev.right = curr;
  prev = curr;
  revInorder(curr.left);
}
 
// Function to flatten binary
// tree using level order
// traversal
static node flatten(node parent)
{
  // Dummy node
  node dummy = new node(-1);
 
  // Pointer to previous
  // element
  prev = dummy;
 
  // Calling in-order
  // traversal
  revInorder(parent);
 
  prev.left = null;
  prev.right = null;
  node ret = dummy.right;
 
  // Delete dummy node
  //delete dummy;
  return ret;
}
 
// Driver code
public static void main(String[] args)
{
  node root = new node(5);
  root.left = new node(3);
  root.right = new node(7);
  root.left.left = new node(2);
  root.left.right = new node(4);
  root.right.left = new node(6);
  root.right.right = new node(8);
 
  // Calling required function
  print(flatten(root));
}
}
 
// This code is contributed by Amit Katiyar

Python3

# Python3 implementation of the
# above approach
 
# Node of the binary tree
class node:
     
    def __init__(self, data):
        self.data = data;
        self.left = None;
        self.right = None;
 
# Function to print flattened
# binary tree
def printNode(parent):
    curr = parent;
    while (curr != None):
        print(curr.data, end = ' ')
        curr = curr.right;
 
 
# Function to perform reverse in-order traversal
def revInorder(curr):
    global prev;
    # Base case
    if (curr == None):
        return;
    revInorder(curr.right);
    prev.left = None;
    prev.right = curr;
    prev = curr;
    revInorder(curr.left);
 
# Function to flatten binary tree using
# level order traversal
def flatten(parent):
     
    global prev;
    # Dummy node
    dummy = node(-1);
 
    # Pointer to previous element
    prev = dummy;
 
    # Calling in-order traversal
    revInorder(parent);
 
    prev.left = None;
    prev.right = None;
    ret = dummy.right;
 
    return ret;
 
# Driver code
prev = node(0)
root = node(5);
root.left = node(3);
root.right = node(7);
root.left.left = node(2);
root.left.right = node(4);
root.right.left = node(6);
root.right.right = node(8);
 
# Calling required function
printNode(flatten(root));
 
# This code is contributed by rrrtnx.

C#

// C# implementation of the
// above approach
using System;
 
class GFG{
 
// Node of the binary tree
public class node
{
  public int data;
  public node left;
  public node right;
   
  public node(int data)
  {
    this.data = data;
    left = null;
    right = null;
  }
};
 
// Function to print flattened
// binary tree
static void print(node parent)
{
  node curr = parent;
   
  while (curr != null)
  {
    Console.Write(curr.data + " ");
    curr = curr.right;
  }
}
 
static  node prev;
   
// Function to perform reverse
// in-order traversal
static void revInorder(node curr)
{
   
  // Base case
  if (curr == null)
    return;
   
  revInorder(curr.right);
  prev.left = null;
  prev.right = curr;
  prev = curr;
   
  revInorder(curr.left);
}
 
// Function to flatten binary
// tree using level order
// traversal
static node flatten(node parent)
{
   
  // Dummy node
  node dummy = new node(-1);
 
  // Pointer to previous
  // element
  prev = dummy;
 
  // Calling in-order
  // traversal
  revInorder(parent);
 
  prev.left = null;
  prev.right = null;
  node ret = dummy.right;
   
  // Delete dummy node
  //delete dummy;
  return ret;
}
 
// Driver code
public static void Main(String[] args)
{
  node root = new node(5);
  root.left = new node(3);
  root.right = new node(7);
  root.left.left = new node(2);
  root.left.right = new node(4);
  root.right.left = new node(6);
  root.right.right = new node(8);
 
  // Calling required function
  print(flatten(root));
}
}
 
// This code is contributed by Rajput-Ji

Javascript

<script>
 
// Javascript implementation of the approach
 
// Node of the binary tree
class node
{
    constructor(data)
    {
        this.left = null;
        this.right = null;
        this.data = data;
    }
}
 
// Function to print flattened
// binary tree
function print(parent)
{
    let curr = parent;
    while (curr != null)
    {
        document.write(curr.data + " ");
        curr = curr.right;
    }
}
 
let prev;
 
// Function to perform reverse
// in-order traversal
function revInorder(curr)
{
     
    // Base case
    if (curr == null)
        return;
         
    revInorder(curr.right);
    prev.left = null;
    prev.right = curr;
    prev = curr;
    revInorder(curr.left);
}
 
// Function to flatten binary
// tree using level order
// traversal
function flatten(parent)
{
     
    // Dummy node
    let dummy = new node(-1);
     
    // Pointer to previous
    // element
    prev = dummy;
     
    // Calling in-order
    // traversal
    revInorder(parent);
     
    prev.left = null;
    prev.right = null;
    let ret = dummy.right;
     
    // Delete dummy node
    //delete dummy;
    return ret;
}
 
// Driver code
let root = new node(5);
root.left = new node(3);
root.right = new node(7);
root.left.left = new node(2);
root.left.right = new node(4);
root.right.left = new node(6);
root.right.right = new node(8);
 
// Calling required function
print(flatten(root));
 
// This code is contributed by divyeshrabadiya07
 
</script>
Producción: 

8 7 6 5 4 3 2

 

Complejidad temporal: O(N)
Espacio auxiliar: O(N)

Publicación traducida automáticamente

Artículo escrito por DivyanshuShekhar1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *