Dado un semicírculo de radio R , que inscribe un rectángulo de largo L y ancho B , que a su vez inscribe un círculo de radio r . La tarea es encontrar el área del círculo con radio r.
Ejemplos:
Input : R = 2 Output : 1.57 Input : R = 5 Output : 9.8125
Enfoque :
Sabemos que el rectángulo más grande que se puede inscribir dentro del semicírculo tiene longitud, l=√2R/2 y
ancho, b=R/√2 ( Consulte )
Además, el círculo más grande que se puede inscribir dentro del rectángulo tiene radio, r=b/2=R/2√2 ( Consulte )
Así que el área del círculo, A=π*r^2=π(R/2√2)^2
C++
// C++ Program to find the area of the circle // inscribed within the rectangle which in turn // is inscribed in a semicircle #include <bits/stdc++.h> using namespace std; // Function to find the area of the circle float area(float r) { // radius cannot be negative if (r < 0) return -1; // area of the circle float area = 3.14 * pow(r / (2 * sqrt(2)), 2); return area; } // Driver code int main() { float a = 5; cout << area(a) << endl; return 0; }
Java
// Java Program to find the area of the circle // inscribed within the rectangle which in turn // is inscribed in a semicircle import java.io.*; class GFG { // Function to find the area of the circle static float area(float r) { // radius cannot be negative if (r < 0) return -1; // area of the circle float area = (float)(3.14 * Math.pow(r / (2 * Math.sqrt(2)), 2)); return area; } // Driver code public static void main (String[] args) { float a = 5; System.out.println( area(a)); } } // This code is contributed by ajit
Python3
# Python 3 Program to find the # area of the circle inscribed # within the rectangle which in # turn is inscribed in a semicircle from math import pow, sqrt # Function to find the area # of the circle def area(r): # radius cannot be negative if (r < 0): return -1 # area of the circle area = 3.14 * pow(r / (2 * sqrt(2)), 2); return area; # Driver code if __name__ == '__main__': a = 5 print("{0:.6}".format(area(a))) # This code is contributed By # Surendra_Gangwar
C#
// C# Program to find the area of // the circle inscribed within the // rectangle which in turn is // inscribed in a semicircle using System; class GFG { // Function to find the area // of the circle static float area(float r) { // radius cannot be negative if (r < 0) return -1; // area of the circle float area = (float)(3.14 * Math.Pow(r / (2 * Math.Sqrt(2)), 2)); return area; } // Driver code static public void Main (String []args) { float a = 5; Console.WriteLine(area(a)); } } // This code is contributed // by Arnab Kundu
PHP
<?php // PHP Program to find the area // of the circle inscribed within // the rectangle which in turn // is inscribed in a semicircle // Function to find the area // of the circle function area($r) { // radius cannot be negative if ($r < 0) return -1; // area of the circle $area = 3.14 * pow($r / (2 * sqrt(2)), 2); return $area; } // Driver code $a = 5; echo area($a); // This code is contributed by mits
Javascript
<script> // javascript Program to find the area of the circle // inscribed within the rectangle which in turn // is inscribed in a semicircle // Function to find the area of the circle function area(r) { // radius cannot be negative if (r < 0) return -1; // area of the circle var area = (3.14 * Math.pow(r / (2 * Math.sqrt(2)), 2)); return area; } // Driver code var a = 5; document.write( area(a).toFixed(6)); // This code contributed by shikhasingrajput </script>
Producción:
9.8125
Complejidad de tiempo: O (logn)
Espacio Auxiliar: O(1)
Publicación traducida automáticamente
Artículo escrito por IshwarGupta y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA