Dadas dos arrays arr1[] y arr2[] que constan de N y M enteros respectivamente, la tarea es imprimir el Bitwise XOR de Bitwise AND de todos los pares posibles seleccionando un elemento de arr1[] y arr2[].
Ejemplos:
Entrada: arr1[] = {1, 2, 3}, arr2[] = {6, 5}
Salida: 0
Explicación:
AND bit a bit del par (arr1[0], arr2[]) = 1 y 6 = 0.
AND bit a bit del par (arr1[0], arr2[1]) = 1 & 5 = 1.
AND bit a bit del par (arr1[1], arr2[0]) = 2 & 6 = 2.
AND bit a bit del par par (arr1[1], arr2[1]) = 2 y 5 = 0.
AND bit a bit del par (arr1[2], arr2[0]) = 3 & 6 = 2.
AND bit a bit del par (arr1[ 2], arr2[1]) = 3 & 5 = 1.
Por lo tanto, el Bitwise XOR de los valores Bitwise AND obtenidos = 0 ^ 1 ^ 2 ^ 0^ 2 ^ 1 = 0.Entrada: arr1[] = {12}, arr2[] = {4}
Salida: 4
Enfoque ingenuo: el enfoque más simple es encontrar el AND bit a bit de todos los pares posibles seleccionando un elemento de arr1[] y otro elemento de arr2[] y luego, calculando el XOR bit a bit de todos los AND bit a bit de los pares resultantes.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to find the Bitwise XOR // of Bitwise AND of all pairs from // the arrays arr1[] and arr2[] int findXORS(int arr1[], int arr2[], int N, int M) { // Stores the result int res = 0; // Iterate over the range [0, N - 1] for (int i = 0; i < N; i++) { // Iterate over the range [0, M - 1] for (int j = 0; j < M; j++) { // Stores Bitwise AND of // the pair {arr1[i], arr2[j]} int temp = arr1[i] & arr2[j]; // Update res res ^= temp; } } // Return the res return res; } // Driver Code int main() { // Input int arr1[] = { 1, 2, 3 }; int arr2[] = { 6, 5 }; int N = sizeof(arr1) / sizeof(arr1[0]); int M = sizeof(arr2) / sizeof(arr2[0]); cout << findXORS(arr1, arr2, N, M); return 0; }
Java
// Java program for the above approach import java.util.*; class GFG{ // Function to find the Bitwise XOR // of Bitwise AND of all pairs from // the arrays arr1[] and arr2[] static int findXORS(int arr1[], int arr2[], int N, int M) { // Stores the result int res = 0; // Iterate over the range [0, N - 1] for(int i = 0; i < N; i++) { // Iterate over the range [0, M - 1] for(int j = 0; j < M; j++) { // Stores Bitwise AND of // the pair {arr1[i], arr2[j]} int temp = arr1[i] & arr2[j]; // Update res res ^= temp; } } // Return the res return res; } // Driver Code public static void main(String[] args) { // Input int arr1[] = { 1, 2, 3 }; int arr2[] = { 6, 5 }; int N = arr1.length; int M = arr2.length; System.out.print(findXORS(arr1, arr2, N, M)); } } // This code is contributed by 29AjayKumar
Python3
# Python 3 program for the above approach # Function to find the Bitwise XOR # of Bitwise AND of all pairs from # the arrays arr1[] and arr2[] def findXORS(arr1, arr2, N, M): # Stores the result res = 0 # Iterate over the range [0, N - 1] for i in range(N): # Iterate over the range [0, M - 1] for j in range(M): # Stores Bitwise AND of # the pair {arr1[i], arr2[j]} temp = arr1[i] & arr2[j] # Update res res ^= temp # Return the res return res # Driver Code if __name__ == '__main__': # Input arr1 = [1, 2, 3] arr2 = [6, 5] N = len(arr1) M = len(arr2) print(findXORS(arr1, arr2, N, M)) # This code is contributed by ipg2016107.
C#
// C# program for the above approach using System; class GFG { // Function to find the Bitwise XOR // of Bitwise AND of all pairs from // the arrays arr1[] and arr2[] static int findXORS(int[] arr1, int[] arr2, int N, int M) { // Stores the result int res = 0; // Iterate over the range [0, N - 1] for (int i = 0; i < N; i++) { // Iterate over the range [0, M - 1] for (int j = 0; j < M; j++) { // Stores Bitwise AND of // the pair {arr1[i], arr2[j]} int temp = arr1[i] & arr2[j]; // Update res res ^= temp; } } // Return the res return res; } // Driver Code public static void Main() { // Input int[] arr1 = { 1, 2, 3 }; int[] arr2 = { 6, 5 }; int N = arr1.Length; int M = arr2.Length; Console.Write(findXORS(arr1, arr2, N, M)); } } // This code is contributed by ukasp.
Javascript
<script> // Javascript program for the above approach // Function to find the Bitwise XOR // of Bitwise AND of all pairs from // the arrays arr1[] and arr2[] function findXORS(arr1, arr2, N, M) { // Stores the result let res = 0; // Iterate over the range [0, N - 1] for (let i = 0; i < N; i++) { // Iterate over the range [0, M - 1] for (let j = 0; j < M; j++) { // Stores Bitwise AND of // the pair {arr1[i], arr2[j]} let temp = arr1[i] & arr2[j]; // Update res res ^= temp; } } // Return the res return res; } // Driver Code // Input let arr1 = [1, 2, 3]; let arr2 = [6, 5]; let N = arr1.length; let M = arr2.length; document.write(findXORS(arr1, arr2, N, M)); // This code is contributed by _saurabh_jaiswal </script>
0
Complejidad de Tiempo: O(N * M)
Espacio Auxiliar: O(1)
Enfoque eficiente: el enfoque anterior se puede optimizar en función de las siguientes observaciones:
- Las operaciones Bitwise Xor y Bitwise And tienen propiedades aditivas y distributivas.
- Por lo tanto, considerando las arrays como arr1[] = {A, B} y arr2[] = {X, Y}:
- (A Y X) XOR (A Y Y) XOR (B Y X) XOR (B Y Y)
- (A Y (X XOR Y)) XOR (B Y (X XOR Y))
- (A X O B) Y (X X O Y)
- Por lo tanto, a partir de los pasos anteriores, la tarea se reduce a encontrar el Y bit a bit del XOR bit a bit de arr1[] y arr2[].
Siga los pasos a continuación para resolver el problema:
- Encuentre el Xor bit a bit de cada elemento de una array arr1[] y guárdelo en una variable, digamos XORS1.
- Encuentre el Xor bit a bit de cada elemento de una array arr2[] y guárdelo en una variable, digamos XORS2 .
- Finalmente, imprima el resultado como AND bit a bit de XORS1 y XORS2.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to find the Bitwise XOR // of Bitwise AND of all pairs from // the arrays arr1[] and arr2[] int findXORS(int arr1[], int arr2[], int N, int M) { // Stores XOR of array arr1[] int XORS1 = 0; // Stores XOR of array arr2[] int XORS2 = 0; // Traverse the array arr1[] for (int i = 0; i < N; i++) { XORS1 ^= arr1[i]; } // Traverse the array arr2[] for (int i = 0; i < M; i++) { XORS2 ^= arr2[i]; } // Return the result return XORS1 and XORS2; } // Driver Code int main() { // Input int arr1[] = { 1, 2, 3 }; int arr2[] = { 6, 5 }; int N = sizeof(arr1) / sizeof(arr1[0]); int M = sizeof(arr2) / sizeof(arr2[0]); cout << findXORS(arr1, arr2, N, M); return 0; }
Java
// Java program for the above approach import java.io.*; import java.lang.*; import java.util.*; class GFG{ // Function to find the Bitwise XOR // of Bitwise AND of all pairs from // the arrays arr1[] and arr2[] static int findXORS(int arr1[], int arr2[], int N, int M) { // Stores XOR of array arr1[] int XORS1 = 0; // Stores XOR of array arr2[] int XORS2 = 0; // Traverse the array arr1[] for(int i = 0; i < N; i++) { XORS1 ^= arr1[i]; } // Traverse the array arr2[] for(int i = 0; i < M; i++) { XORS2 ^= arr2[i]; } // Return the result return (XORS1 & XORS2); } // Driver Code public static void main(String[] args) { // Input int arr1[] = { 1, 2, 3 }; int arr2[] = { 6, 5 }; int N = arr1.length; int M = arr2.length; System.out.println(findXORS(arr1, arr2, N, M)); } } // This code is contributed by susmitakundugoaldanga
Python3
# Python3 program for the above approach # Function to find the Bitwise XOR # of Bitwise AND of all pairs from # the arrays arr1[] and arr2[] def findXORS(arr1, arr2, N, M): # Stores XOR of array arr1[] XORS1 = 0 # Stores XOR of array arr2[] XORS2 = 0 # Traverse the array arr1[] for i in range(N): XORS1 ^= arr1[i] # Traverse the array arr2[] for i in range(M): XORS2 ^= arr2[i] # Return the result return XORS1 and XORS2 # Driver Code if __name__ == '__main__': # Input arr1 = [ 1, 2, 3 ] arr2 = [ 6, 5 ] N = len(arr1) M = len(arr2) print(findXORS(arr1, arr2, N, M)) # This code is contributed by bgangwar59
C#
// C# program for the above approach using System; class GFG{ // Function to find the Bitwise XOR // of Bitwise AND of all pairs from // the arrays arr1[] and arr2[] static int findXORS(int []arr1, int []arr2, int N, int M) { // Stores XOR of array arr1[] int XORS1 = 0; // Stores XOR of array arr2[] int XORS2 = 0; // Traverse the array arr1[] for(int i = 0; i < N; i++) { XORS1 ^= arr1[i]; } // Traverse the array arr2[] for(int i = 0; i < M; i++) { XORS2 ^= arr2[i]; } // Return the result return (XORS1 & XORS2); } // Driver Code public static void Main(String[] args) { // Input int []arr1 = { 1, 2, 3 }; int []arr2 = { 6, 5 }; int N = arr1.Length; int M = arr2.Length; Console.WriteLine(findXORS(arr1, arr2, N, M)); } } // This code is contributed by 29AjayKumar
Javascript
<script> // JavaScript program for the above approach // Function to find the Bitwise XOR // of Bitwise AND of all pairs from // the arrays arr1[] and arr2[] function findXORS(arr1, arr2, N, M) { // Stores XOR of array arr1[] let XORS1 = 0; // Stores XOR of array arr2[] let XORS2 = 0; // Traverse the array arr1[] for (let i = 0; i < N; i++) { XORS1 ^= arr1[i]; } // Traverse the array arr2[] for (let i = 0; i < M; i++) { XORS2 ^= arr2[i]; } // Return the result return XORS1 && XORS2; } // Driver Code // Input let arr1 = [ 1, 2, 3 ]; let arr2 = [ 6, 5 ]; let N = arr1.length; let M = arr2.length; document.write(findXORS(arr1, arr2, N, M)); // This code is contributed by Dharanendra L V. </script>
0
Complejidad temporal: O(N + M)
Espacio auxiliar: O(1)
Publicación traducida automáticamente
Artículo escrito por srinivasteja18 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA