Buscar raíz cuadrada en Módulo p | Conjunto 1 (Cuando p está en forma de 4*i + 3)

Dado un número ‘n’ y un primo ‘p’, encuentre la raíz cuadrada de n bajo módulo p si existe. Se puede dar que p está en la forma de 4*i + 3 (O p % 4 = 3) donde i es un número entero. Ejemplos de tales números primos son 7, 11, 19, 23, 31, … etc.
Ejemplos: 
 

Input:  n = 2, p = 7
Output: 3 or 4
3 and 4 both are square roots of 2 under modulo
7 because (3*3) % 7 = 2 and (4*4) % 7 = 2

Input:  n = 2, p = 5
Output: Square root doesn't exist

Solución ingenua: pruebe todos los números del 2 al p-1. Y para cada número x, compruebe si x es la raíz cuadrada de n en el módulo p. 
 

C++

// A Simple C++ program to find square root under modulo p
// when p is 7, 11, 19, 23, 31, ... etc,
#include <iostream>
using namespace std;
 
// Returns true if square root of n under modulo p exists
void squareRoot(int n, int p)
{
    n = n % p;
 
    // One by one check all numbers from 2 to p-1
    for (int x = 2; x < p; x++) {
        if ((x * x) % p == n) {
            cout << "Square root is " << x;
            return;
        }
    }
    cout << "Square root doesn't exist";
}
 
// Driver program to test
int main()
{
    int p = 7;
    int n = 2;
    squareRoot(n, p);
    return 0;
}

Java

// A Simple Java program to find square
// root under modulo p when p is 7,
// 11, 19, 23, 31, ... etc,
import java .io.*;
 
class GFG {
 
    // Returns true if square root of n
    // under modulo p exists
    static void squareRoot(int n, int p)
    {
        n = n % p;
     
        // One by one check all numbers
        // from 2 to p-1
        for (int x = 2; x < p; x++) {
            if ((x * x) % p == n) {
                System.out.println("Square "
                    + "root is " + x);
                return;
            }
        }
        System.out.println("Square root "
                + "doesn't exist");
    }
     
    // Driver Code
    public static void main(String[] args)
    {
        int p = 7;
        int n = 2;
        squareRoot(n, p);
    }
}
 
// This code is contributed by Anuj_67

Python3

# A Simple Python program to find square
# root under modulo p when p is 7, 11,
# 19, 23, 31, ... etc,
 
# Returns true if square root of n under
# modulo p exists
def squareRoot(n, p):
 
    n = n % p
     
    # One by one check all numbers from
    # 2 to p-1
    for x in range (2, p):
        if ((x * x) % p == n) :
            print( "Square root is ", x)
            return
 
    print( "Square root doesn't exist")
 
# Driver program to test
p = 7
n = 2
squareRoot(n, p)
 
# This code is Contributed by Anuj_67

C#

// A Simple C# program to find square
// root under modulo p when p is 7,
// 11, 19, 23, 31, ... etc,
using System;
 
class GFG {
 
    // Returns true if square root of n
    // under modulo p exists
    static void squareRoot(int n, int p)
    {
        n = n % p;
     
        // One by one check all numbers
        // from 2 to p-1
        for (int x = 2; x < p; x++) {
            if ((x * x) % p == n) {
                Console.Write("Square "
                     + "root is " + x);
                return;
            }
        }
        Console.Write("Square root "
                   + "doesn't exist");
    }
     
    // Driver Code
    static void Main()
    {
        int p = 7;
        int n = 2;
        squareRoot(n, p);
    }
}
 
// This code is contributed by Anuj_67

PHP

<?php
// A Simple PHP program to find
// square root under modulo p
// when p is 7, 11, 19, 23, 31,
// ... etc,
 
// Returns true if square
// root of n under modulo
// p exists
function squareRoot($n, $p)
{
    $n = $n % $p;
 
    // One by one check all
    // numbers from 2 to p-1
    for ($x = 2; $x < $p; $x++)
    {
        if (($x * $x) % $p == $n)
        {
            echo("Square root is " . $x);
            return;
        }
    }
    echo("Square root doesn't exist");
}
 
// Driver Code
$p = 7;
$n = 2;
squareRoot($n, $p);
 
// This code is contributed by Ajit.
?>

Javascript

<script>
// A Simple Javascript program to find square
// root under modulo p when p is 7,
// 11, 19, 23, 31, ... etc,
 
    // Returns true if square root of n
    // under modulo p exists
    function squareRoot(n,p)
    {
         n = n % p;
       
        // One by one check all numbers
        // from 2 to p-1
        for (let x = 2; x < p; x++) {
            if ((x * x) % p == n) {
                document.write("Square "
                    + "root is " + x);
                return;
            }
        }
        document.write("Square root "
                + "doesn't exist");
    }
     
    // Driver Code
    let p = 7;
    let n = 2;
    squareRoot(n, p);
     
    // This code is contributed by rag2127
     
</script>

Producción: 

Square root is 3

La complejidad temporal de esta solución es O(p)
Método directo: si p tiene la forma de 4*i + 3, entonces existe una forma rápida de encontrar la raíz cuadrada. 
 

If n is in the form 4*i + 3 with i >= 1 (OR p % 4 = 3)
And 
If Square root of n exists, then it must be
        ±n(p + 1)/4

A continuación se muestra la implementación de la idea anterior: 
 

C++

// An efficient C++ program to find square root under
// modulo p when p is 7, 11, 19, 23, 31, ... etc.
#include <iostream>
using namespace std;
 
// Utility function to do modular exponentiation.
// It returns (x^y) % p.
int power(int x, int y, int p)
{
    int res = 1; // Initialize result
    x = x % p; // Update x if it is more than or
    // equal to p
 
    while (y > 0)
    {
       
        // If y is odd, multiply x with result
        if (y & 1)
            res = (res * x) % p;
 
        // y must be even now
        y = y >> 1; // y = y/2
        x = (x * x) % p;
    }
    return res;
}
 
// Returns true if square root of n under modulo p exists
// Assumption: p is of the form 3*i + 4 where i >= 1
void squareRoot(int n, int p)
{
    if (p % 4 != 3) {
        cout << "Invalid Input";
        return;
    }
 
    // Try "+(n^((p + 1)/4))"
    n = n % p;
    int x = power(n, (p + 1) / 4, p);
    if ((x * x) % p == n) {
        cout << "Square root is " << x;
        return;
    }
 
    // Try "-(n ^ ((p + 1)/4))"
    x = p - x;
    if ((x * x) % p == n) {
        cout << "Square root is " << x;
        return;
    }
 
    // If none of the above two work, then
    // square root doesn't exist
    cout << "Square root doesn't exist ";
}
 
// Driver program to test
int main()
{
    int p = 7;
    int n = 2;
    squareRoot(n, p);
    return 0;
}

Java

// An efficient Java program to find square root under
// modulo p when p is 7, 11, 19, 23, 31, ... etc.
public class GFG {
 
 
// Utility function to do modular exponentiation.
// It returns (x^y) % p.
static int power(int x, int y, int p)
{
    int res = 1; // Initialize result
    x = x % p; // Update x if it is more than or
    // equal to p
 
    while (y > 0) {
        // If y is odd, multiply x with result
        if (y %2== 1)
            res = (res * x) % p;
 
        // y must be even now
        y = y >> 1; // y = y/2
        x = (x * x) % p;
    }
    return res;
}
 
// Returns true if square root of n under modulo p exists
// Assumption: p is of the form 3*i + 4 where i >= 1
static void squareRoot(int n, int p)
{
    if (p % 4 != 3) {
        System.out.print("Invalid Input");
        return;
    }
 
    // Try "+(n^((p + 1)/4))"
    n = n % p;
    int x = power(n, (p + 1) / 4, p);
    if ((x * x) % p == n) {
        System.out.print("Square root is " + x);
        return;
    }
 
    // Try "-(n ^ ((p + 1)/4))"
    x = p - x;
    if ((x * x) % p == n) {
        System.out.print("Square root is " + x);
        return;
    }
 
    // If none of the above two work, then
    // square root doesn't exist
    System.out.print("Square root doesn't exist ");
}
 
// Driver program to test
   static public void main(String[] args) {
       int p = 7;
    int n = 2;
    squareRoot(n, p);
    }
}

Python3

# An efficient python3 program to find square root
# under modulo p when p is 7, 11, 19, 23, 31, ... etc.
 
# Utility function to do modular exponentiation.
# It returns (x^y) % p.
def power(x, y, p) :
 
    res = 1 # Initialize result
    x = x % p # Update x if it is more
              # than or equal to p
 
    while (y > 0):
         
        # If y is odd, multiply x with result
        if (y & 1):
            res = (res * x) % p
 
        # y must be even now
        y = y >> 1 # y = y/2
        x = (x * x) % p
 
    return res
 
# Returns true if square root of n under
# modulo p exists. Assumption: p is of the
# form 3*i + 4 where i >= 1
def squareRoot(n, p):
 
    if (p % 4 != 3) :
        print( "Invalid Input" )
        return
 
 
    # Try "+(n^((p + 1)/4))"
    n = n % p
    x = power(n, (p + 1) // 4, p)
    if ((x * x) % p == n):
        print( "Square root is ", x)
        return
 
    # Try "-(n ^ ((p + 1)/4))"
    x = p - x
    if ((x * x) % p == n):
        print( "Square root is ", x )
        return
 
    # If none of the above two work, then
    # square root doesn't exist
    print( "Square root doesn't exist " )
 
# Driver Code
p = 7
n = 2
squareRoot(n, p)
 
# This code is contributed by
# Shubham Singh(SHUBHAMSINGH10)

C#

// An efficient C# program to find square root under
// modulo p when p is 7, 11, 19, 23, 31, ... etc.
 
using System;
public class GFG {
  
// Utility function to do modular exponentiation.
// It returns (x^y) % p.
static int power(int x, int y, int p)
{
    int res = 1; // Initialize result
    x = x % p; // Update x if it is more than or
    // equal to p
  
    while (y > 0) {
        // If y is odd, multiply x with result
        if (y %2 == 1)
            res = (res * x) % p;
  
        // y must be even now
        y = y >> 1; // y = y/2
        x = (x * x) % p;
    }
    return res;
}
  
// Returns true if square root of n under modulo p exists
// Assumption: p is of the form 3*i + 4 where i >= 1
static void squareRoot(int n, int p)
{
    if (p % 4 != 3) {
        Console.Write("Invalid Input");
        return;
    }
  
    // Try "+(n^((p + 1)/4))"
    n = n % p;
    int x = power(n, (p + 1) / 4, p);
    if ((x * x) % p == n) {
        Console.Write("Square root is " + x);
        return;
    }
  
    // Try "-(n ^ ((p + 1)/4))"
    x = p - x;
    if ((x * x) % p == n) {
        Console.Write("Square root is " + x);
        return;
    }
  
    // If none of the above two work, then
    // square root doesn't exist
    Console.Write("Square root doesn't exist ");
}
  
// Driver program to test
   static public void Main() {
       int p = 7;
    int n = 2;
    squareRoot(n, p);
    }
}
// This code is contributed by Ita_c.

PHP

<?php
// An efficient PHP program
// to find square root under
// modulo p when p is 7, 11,
// 19, 23, 31, ... etc.
 
// Utility function to do
// modular exponentiation.
// It returns (x^y) % p.
function power($x, $y, $p)
{
     
    // Initialize result
    $res = 1;    
     
    // Update x if it
    // is more than or
    // equal to p
    $x = $x % $p;
 
    while ($y > 0)
    {
         
        // If y is odd, multiply
        // x with result
        if ($y & 1)
            $res = ($res * $x) % $p;
 
        // y must be even now
        // y = y/2
        $y = $y >> 1;
        $x = ($x * $x) % $p;
    }
    return $res;
}
 
// Returns true if square root
// of n under modulo p exists
// Assumption: p is of the
// form 3*i + 4 where i >= 1
function squareRoot($n, $p)
{
    if ($p % 4 != 3)
    {
        echo "Invalid Input";
        return;
    }
 
    // Try "+(n^((p + 1)/4))"
    $n = $n % $p;
    $x = power($n, ($p + 1) / 4, $p);
    if (($x * $x) % $p == $n)
    {
        echo "Square root is ", $x;
        return;
    }
 
    // Try "-(n ^ ((p + 1)/4))"
    $x = $p - $x;
    if (($x * $x) % $p == $n)
    {
        echo "Square root is ", $x;
        return;
    }
 
    // If none of the above
    // two work, then square
    // root doesn't exist
    echo "Square root doesn't exist ";
}
 
    // Driver Code
    $p = 7;
    $n = 2;
    squareRoot($n, $p);
 
// This code is contributed by ajit
?>

Javascript

<script>
// An efficient Javascript program to find square root under
// modulo p when p is 7, 11, 19, 23, 31, ... etc.
     
    // Utility function to do modular exponentiation.
    // It returns (x^y) % p.
    function power(x,y,p)
    {
        let res = 1; // Initialize result
        x = x % p; // Update x if it is more than or
        // equal to p
      
        while (y > 0)
        {
         
            // If y is odd, multiply x with result
            if (y %2== 1)
                res = (res * x) % p;
      
            // y must be even now
            y = y >> 1; // y = y/2
            x = (x * x) % p;
        }
        return res;
    }
     
    // Returns true if square root of n under modulo p exists
    // Assumption: p is of the form 3*i + 4 where i >= 1
    function squareRoot(n, p)
    {
        if (p % 4 != 3)
        {
            document.write("Invalid Input");
            return;
        }
      
        // Try "+(n^((p + 1)/4))"
        n = n % p;
        let x = power(n, Math.floor((p + 1) / 4), p);
        if ((x * x) % p == n) {
            document.write("Square root is " + x);
            return;
        }
      
        // Try "-(n ^ ((p + 1)/4))"
        x = p - x;
        if ((x * x) % p == n) {
            document.write("Square root is " + x);
            return;
        }
      
        // If none of the above two work, then
        // square root doesn't exist
        document.write("Square root doesn't exist ");
    }
     
    // Driver program to test
    let p = 7;
    let n = 2;
    squareRoot(n, p);
     
    // This code is contributed by avanitrachhadiya2155
</script>

Producción:

Square root is 4

La complejidad temporal de esta solución es O(Log p)
¿Cómo funciona esto?  
Hemos discutido el Criterio de Euler en la publicación anterior.
 

As per Euler's criterion, if square root exists, then 
following condition is true
 n(p-1)/2 % p = 1

Multiplying both sides with n, we get
 n(p+1)/2 % p = n % p  ------ (1)

Let x be the modulo square root. We can write,
  (x * x) ≡ n mod p
  (x * x) ≡ n(p+1)/2  [Using (1) given above]
  (x * x) ≡ n(2i + 2) [Replacing n = 4*i + 3]
        x ≡ ±n(i + 1)  [Taking Square root of both sides]
        x ≡ ±n(p + 1)/4 [Putting 4*i + 3 = p or i = (p-3)/4]

Pronto discutiremos métodos cuando p no está en la forma anterior.
Este artículo es una contribución de Shivam Gupta . Escriba comentarios si encuentra algo incorrecto o si desea compartir más información sobre el tema tratado anteriormente.
 

Publicación traducida automáticamente

Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *