Buscar raíz cuadrada en Módulo p | Conjunto 2 (algoritmo Shanks Tonelli)

Dado un número ‘n’ y un primo ‘p’, encuentre la raíz cuadrada de n bajo módulo p si existe. 
Ejemplos: 
 

Input: n = 2, p = 113
Output: 62
62^2 = 3844  and  3844 % 113 = 2

Input:  n = 2, p = 7
Output: 3 or 4
3 and 4 both are square roots of 2 under modulo
7 because (3*3) % 7 = 2 and (4*4) % 7 = 2

Input:  n = 2, p = 5
Output: Square root doesn't exist

Hemos discutido el criterio de Euler para verificar si la raíz cuadrada existe o no. También hemos discutido una solución que funciona solo cuando p está en forma de 4*i + 3. 
En esta publicación, se analiza el algoritmo de Shank Tonelli que funciona para todo tipo de entradas.
Pasos del algoritmo para encontrar la raíz cuadrada modular usando el algoritmo de Shank Tonelli:
1) Calcular n ^ ((p – 1) / 2) (mod p), debe ser 1 o p-1, si es p-1, entonces cuadrado modular la raíz no es posible.
2) Luego, después de escribir p-1 como (s * 2^e) para algunos enteros s y e, donde s debe ser un número impar y tanto s como e deben ser positivos.
3) Luego encuentre un número q tal que q ^ ((p – 1) / 2) (mod p) = -1 
4) Inicialice la variable x, b, g y r con los siguientes valores 

   x = n ^ ((s + 1) / 2 (first guess of square root)
   b = n ^ s                
   g = q ^ s
   r = e   (exponent e will decrease after each updation) 

5) Ahora haga un bucle hasta que m > 0 y actualice el valor de x, que será nuestra respuesta final. 

   Find least integer m such that b^(2^m) = 1(mod p)  and  0 <= m <= r – 1 
   If m = 0, then we found correct answer and return x as result
   Else update x, b, g, r as below
       x = x * g ^ (2 ^ (r – m - 1))
       b = b * g ^(2 ^ (r - m))
       g = g ^ (2 ^ (r - m))
       r = m 

así que si m se convierte en 0 o b se convierte en 1, terminamos e imprimimos el resultado. Este ciclo garantiza la terminación porque el valor de m disminuye cada vez que se actualiza.
A continuación se muestra la implementación del algoritmo anterior. 
 

C++

// C++ program to implement Shanks Tonelli algorithm for
// finding Modular  Square Roots
#include <bits/stdc++.h>
using namespace std;
 
//  utility function to find pow(base, exponent) % modulus
int pow(int base, int exponent, int modulus)
{
    int result = 1;
    base = base % modulus;
    while (exponent > 0)
    {
        if (exponent % 2 == 1)
           result = (result * base)% modulus;
        exponent = exponent >> 1;
        base = (base * base) % modulus;
    }
    return result;
}
 
//  utility function to find gcd
int gcd(int a, int b)
{
    if (b == 0)
        return a;
    else
        return gcd(b, a % b);
}
 
//  Returns k such that b^k = 1 (mod p)
int order(int p, int b)
{
    if (gcd(p, b) != 1)
    {
        printf("p and b are not co-prime.\n");
        return -1;
    }
 
    //  Initializing k with first odd prime number
    int k = 3;
    while (1)
    {
        if (pow(b, k, p) == 1)
            return k;
        k++;
    }
}
 
//  function return  p - 1 (= x argument) as  x * 2^e,
//  where x will be odd  sending e as reference because
//  updation is needed in actual e
int convertx2e(int x, int& e)
{
    e = 0;
    while (x % 2 == 0)
    {
        x /= 2;
        e++;
    }
    return x;
}
 
//  Main function for finding the modular square root
int STonelli(int n, int p)
{
    //  a and p should be coprime for finding the modular
    // square root
    if (gcd(n, p) != 1)
    {
        printf("a and p are not coprime\n");
        return -1;
    }
 
    //  If below expression return (p - 1)  then modular
    // square root is not possible
    if (pow(n, (p - 1) / 2, p) == (p - 1))
    {
        printf("no sqrt possible\n");
        return -1;
    }
 
    //  expressing p - 1, in terms of s * 2^e,  where s
    // is odd number
    int s, e;
    s = convertx2e(p - 1, e);
 
    //  finding smallest q such that q ^ ((p - 1) / 2)
    //  (mod p) = p - 1
    int q;
    for (q = 2; ; q++)
    {
        // q - 1 is in place of  (-1 % p)
        if (pow(q, (p - 1) / 2, p) == (p - 1))
            break;
    }
 
    //  Initializing variable x, b and g
    int x = pow(n, (s + 1) / 2, p);
    int b = pow(n, s, p);
    int g = pow(q, s, p);
 
    int r = e;
 
    // keep looping until b become 1 or m becomes 0
    while (1)
    {
        int m;
        for (m = 0; m < r; m++)
        {
            if (order(p, b) == -1)
                return -1;
 
            //  finding m such that b^ (2^m) = 1
            if (order(p, b) == pow(2, m))
                break;
        }
        if (m == 0)
            return x;
 
        // updating value of x, g and b according to
        // algorithm
        x = (x * pow(g, pow(2, r - m - 1), p)) % p;
        g = pow(g, pow(2, r - m), p);
        b = (b * g) % p;
 
        if (b == 1)
            return x;
        r = m;
    }
}
 
//  driver program to test above function
int main()
{
    int n = 2;
 
    // p should be prime
    int p = 113;
 
    int x = STonelli(n, p);
 
    if (x == -1)
        printf("Modular square root is not exist\n");
    else
        printf("Modular square root of %d and %d is %d\n",
                n, p, x);
}

Java

// Java program to implement Shanks
// Tonelli algorithm for finding
// Modular Square Roots
class GFG
{
    static int z = 0;
     
// utility function to find
// pow(base, exponent) % modulus
static int pow1(int base1,
    int exponent, int modulus)
{
    int result = 1;
    base1 = base1 % modulus;
    while (exponent > 0)
    {
        if (exponent % 2 == 1)
            result = (result * base1) % modulus;
        exponent = exponent >> 1;
        base1 = (base1 * base1) % modulus;
    }
    return result;
}
 
// utility function to find gcd
static int gcd(int a, int b)
{
    if (b == 0)
        return a;
    else
        return gcd(b, a % b);
}
 
// Returns k such that b^k = 1 (mod p)
static int order(int p, int b)
{
    if (gcd(p, b) != 1)
    {
        System.out.println("p and b are" +
                            "not co-prime.");
        return -1;
    }
 
    // Initializing k with first
    // odd prime number
    int k = 3;
    while (true)
    {
        if (pow1(b, k, p) == 1)
            return k;
        k++;
    }
}
 
// function return p - 1 (= x argument)
// as x * 2^e, where x will be odd
// sending e as reference because
// updation is needed in actual e
static int convertx2e(int x)
{
    z = 0;
    while (x % 2 == 0)
    {
        x /= 2;
        z++;
    }
    return x;
}
 
// Main function for finding
// the modular square root
static int STonelli(int n, int p)
{
    // a and p should be coprime for 
    // finding the modular square root
    if (gcd(n, p) != 1)
    {
        System.out.println("a and p are not coprime");
        return -1;
    }
 
    // If below expression return (p - 1) then modular
    // square root is not possible
    if (pow1(n, (p - 1) / 2, p) == (p - 1))
    {
        System.out.println("no sqrt possible");
        return -1;
    }
 
    // expressing p - 1, in terms of 
    // s * 2^e, where s is odd number
    int s, e;
    s = convertx2e(p - 1);
    e = z;
 
    // finding smallest q such that q ^ ((p - 1) / 2)
    // (mod p) = p - 1
    int q;
    for (q = 2; ; q++)
    {
        // q - 1 is in place of (-1 % p)
        if (pow1(q, (p - 1) / 2, p) == (p - 1))
            break;
    }
 
    // Initializing variable x, b and g
    int x = pow1(n, (s + 1) / 2, p);
    int b = pow1(n, s, p);
    int g = pow1(q, s, p);
 
    int r = e;
 
    // keep looping until b
    // become 1 or m becomes 0
    while (true)
    {
        int m;
        for (m = 0; m < r; m++)
        {
            if (order(p, b) == -1)
                return -1;
 
            // finding m such that b^ (2^m) = 1
            if (order(p, b) == Math.pow(2, m))
                break;
        }
        if (m == 0)
            return x;
 
        // updating value of x, g and b
        // according to algorithm
        x = (x * pow1(g, (int)Math.pow(2,
                            r - m - 1), p)) % p;
        g = pow1(g, (int)Math.pow(2, r - m), p);
        b = (b * g) % p;
 
        if (b == 1)
            return x;
        r = m;
    }
}
 
// Driver code
public static void main (String[] args)
{
 
    int n = 2;
 
    // p should be prime
    int p = 113;
 
    int x = STonelli(n, p);
 
    if (x == -1)
        System.out.println("Modular square" +
                        "root is not exist\n");
    else
        System.out.println("Modular square root of " +
                            n + " and " + p + " is " +
                            x + "\n");
}
}
 
// This code is contributed by mits

Python3

# Python3 program to implement Shanks Tonelli
# algorithm for finding Modular Square Roots
 
# utility function to find pow(base,
# exponent) % modulus
def pow1(base, exponent, modulus):
 
    result = 1;
    base = base % modulus;
    while (exponent > 0):
        if (exponent % 2 == 1):
            result = (result * base) % modulus;
        exponent = int(exponent) >> 1;
        base = (base * base) % modulus;
 
    return result;
 
# utility function to find gcd
def gcd(a, b):
    if (b == 0):
        return a;
    else:
        return gcd(b, a % b);
 
# Returns k such that b^k = 1 (mod p)
def order(p, b):
 
    if (gcd(p, b) != 1):
        print("p and b are not co-prime.\n");
        return -1;
 
    # Initializing k with first
    # odd prime number
    k = 3;
    while (True):
        if (pow1(b, k, p) == 1):
            return k;
        k += 1;
 
# function return p - 1 (= x argument) as
# x * 2^e, where x will be odd sending e
# as reference because updation is needed
# in actual e
def convertx2e(x):
    z = 0;
    while (x % 2 == 0):
        x = x / 2;
        z += 1;
         
    return [x, z];
 
# Main function for finding the
# modular square root
def STonelli(n, p):
 
    # a and p should be coprime for
    # finding the modular square root
    if (gcd(n, p) != 1):
        print("a and p are not coprime\n");
        return -1;
 
    # If below expression return (p - 1) then
    # modular square root is not possible
    if (pow1(n, (p - 1) / 2, p) == (p - 1)):
        print("no sqrt possible\n");
        return -1;
 
    # expressing p - 1, in terms of s * 2^e,
    # where s is odd number
    ar = convertx2e(p - 1);
    s = ar[0];
    e = ar[1];
 
    # finding smallest q such that
    # q ^ ((p - 1) / 2) (mod p) = p - 1
    q = 2;
    while (True):
         
        # q - 1 is in place of (-1 % p)
        if (pow1(q, (p - 1) / 2, p) == (p - 1)):
            break;
        q += 1;
 
    # Initializing variable x, b and g
    x = pow1(n, (s + 1) / 2, p);
    b = pow1(n, s, p);
    g = pow1(q, s, p);
 
    r = e;
 
    # keep looping until b become
    # 1 or m becomes 0
    while (True):
        m = 0;
        while (m < r):
            if (order(p, b) == -1):
                return -1;
 
            # finding m such that b^ (2^m) = 1
            if (order(p, b) == pow(2, m)):
                break;
            m += 1;
 
        if (m == 0):
            return x;
 
        # updating value of x, g and b
        # according to algorithm
        x = (x * pow1(g, pow(2, r - m - 1), p)) % p;
        g = pow1(g, pow(2, r - m), p);
        b = (b * g) % p;
 
        if (b == 1):
            return x;
        r = m;
 
# Driver Code
n = 2;
 
# p should be prime
p = 113;
 
x = STonelli(n, p);
 
if (x == -1):
    print("Modular square root is not exist\n");
else:
    print("Modular square root of", n,
          "and", p, "is", x);
         
# This code is contributed by mits

C#

// C# program to implement Shanks
// Tonelli algorithm for finding
// Modular Square Roots
using System;
 
class GFG
{
     
static int z=0;
     
// utility function to find
// pow(base, exponent) % modulus
static int pow1(int base1,
        int exponent, int modulus)
{
    int result = 1;
    base1 = base1 % modulus;
    while (exponent > 0)
    {
        if (exponent % 2 == 1)
            result = (result * base1) % modulus;
        exponent = exponent >> 1;
        base1 = (base1 * base1) % modulus;
    }
    return result;
}
 
// utility function to find gcd
static int gcd(int a, int b)
{
    if (b == 0)
        return a;
    else
        return gcd(b, a % b);
}
 
// Returns k such that b^k = 1 (mod p)
static int order(int p, int b)
{
    if (gcd(p, b) != 1)
    {
        Console.WriteLine("p and b are" +
                            "not co-prime.");
        return -1;
    }
 
    // Initializing k with
    // first odd prime number
    int k = 3;
    while (true)
    {
        if (pow1(b, k, p) == 1)
            return k;
        k++;
    }
}
 
// function return p - 1 (= x argument)
// as x * 2^e, where x will be odd sending
// e as reference because updation is
// needed in actual e
static int convertx2e(int x)
{
    z = 0;
    while (x % 2 == 0)
    {
        x /= 2;
        z++;
    }
    return x;
}
 
// Main function for finding
// the modular square root
static int STonelli(int n, int p)
{
    // a and p should be coprime for
    // finding the modular square root
    if (gcd(n, p) != 1)
    {
        Console.WriteLine("a and p are not coprime");
        return -1;
    }
 
    // If below expression return (p - 1) then
    // modular square root is not possible
    if (pow1(n, (p - 1) / 2, p) == (p - 1))
    {
        Console.WriteLine("no sqrt possible");
        return -1;
    }
 
    // expressing p - 1, in terms of s * 2^e,
    //  where s is odd number
    int s, e;
    s = convertx2e(p - 1);
    e=z;
 
    // finding smallest q such that q ^ ((p - 1) / 2)
    // (mod p) = p - 1
    int q;
    for (q = 2; ; q++)
    {
        // q - 1 is in place of (-1 % p)
        if (pow1(q, (p - 1) / 2, p) == (p - 1))
            break;
    }
 
    // Initializing variable x, b and g
    int x = pow1(n, (s + 1) / 2, p);
    int b = pow1(n, s, p);
    int g = pow1(q, s, p);
 
    int r = e;
 
    // keep looping until b become
    // 1 or m becomes 0
    while (true)
    {
        int m;
        for (m = 0; m < r; m++)
        {
            if (order(p, b) == -1)
                return -1;
 
            // finding m such that b^ (2^m) = 1
            if (order(p, b) == Math.Pow(2, m))
                break;
        }
        if (m == 0)
            return x;
 
        // updating value of x, g and b 
        // according to algorithm
        x = (x * pow1(g, (int)Math.Pow(2, r - m - 1), p)) % p;
        g = pow1(g, (int)Math.Pow(2, r - m), p);
        b = (b * g) % p;
 
        if (b == 1)
            return x;
        r = m;
    }
}
 
// Driver code
static void Main()
{
    int n = 2;
 
    // p should be prime
    int p = 113;
 
    int x = STonelli(n, p);
 
    if (x == -1)
        Console.WriteLine("Modular square root" +
                            "is not exist\n");
    else
        Console.WriteLine("Modular square root of" +
                        "{0} and {1} is {2}\n", n, p, x);
}
}
 
// This code is contributed by mits

PHP

<?php
// PHP program to implement Shanks Tonelli
// algorithm for finding Modular Square Roots
 
// utility function to find pow(base,
// exponent) % modulus
function pow1($base, $exponent, $modulus)
{
    $result = 1;
    $base = $base % $modulus;
    while ($exponent > 0)
    {
        if ($exponent % 2 == 1)
        $result = ($result * $base) % $modulus;
        $exponent = $exponent >> 1;
        $base = ($base * $base) % $modulus;
    }
    return $result;
}
 
// utility function to find gcd
function gcd($a, $b)
{
    if ($b == 0)
        return $a;
    else
        return gcd($b, $a % $b);
}
 
// Returns k such that b^k = 1 (mod p)
function order($p, $b)
{
    if (gcd($p, $b) != 1)
    {
        print("p and b are not co-prime.\n");
        return -1;
    }
 
    // Initializing k with first
    // odd prime number
    $k = 3;
    while (1)
    {
        if (pow1($b, $k, $p) == 1)
            return $k;
        $k++;
    }
}
 
// function return p - 1 (= x argument) as
// x * 2^e, where x will be odd sending e
// as reference because updation is needed
// in actual e
function convertx2e($x, &$e)
{
    $e = 0;
    while ($x % 2 == 0)
    {
        $x = (int)($x / 2);
        $e++;
    }
    return $x;
}
 
// Main function for finding the
// modular square root
function STonelli($n, $p)
{
    // a and p should be coprime for
    // finding the modular square root
    if (gcd($n, $p) != 1)
    {
        print("a and p are not coprime\n");
        return -1;
    }
 
    // If below expression return (p - 1) then
    // modular square root is not possible
    if (pow1($n, ($p - 1) / 2, $p) == ($p - 1))
    {
        printf("no sqrt possible\n");
        return -1;
    }
 
    // expressing p - 1, in terms of s * 2^e,
    // where s is odd number
    $e = 0;
    $s = convertx2e($p - 1, $e);
 
    // finding smallest q such that
    // q ^ ((p - 1) / 2) (mod p) = p - 1
    $q = 2;
    for (; ; $q++)
    {
        // q - 1 is in place of (-1 % p)
        if (pow1($q, ($p - 1) / 2, $p) == ($p - 1))
            break;
    }
 
    // Initializing variable x, b and g
    $x = pow1($n, ($s + 1) / 2, $p);
    $b = pow1($n, $s, $p);
    $g = pow1($q, $s, $p);
 
    $r = $e;
 
    // keep looping until b become
    // 1 or m becomes 0
    while (1)
    {
        $m = 0;
        for (; $m < $r; $m++)
        {
            if (order($p, $b) == -1)
                return -1;
 
            // finding m such that b^ (2^m) = 1
            if (order($p, $b) == pow(2, $m))
                break;
        }
        if ($m == 0)
            return $x;
 
        // updating value of x, g and b
        // according to algorithm
        $x = ($x * pow1($g, pow(2, $r - $m - 1), $p)) % $p;
        $g = pow1($g, pow(2, $r - $m), $p);
        $b = ($b * $g) % $p;
 
        if ($b == 1)
            return $x;
        $r = $m;
    }
}
 
// Driver Code
$n = 2;
 
// p should be prime
$p = 113;
 
$x = STonelli($n, $p);
 
if ($x == -1)
    print("Modular square root is not exist\n");
else
    print("Modular square root of " .
          "$n and $p is $x\n");
     
// This code is contributed by mits
?>

Javascript

<script>
 
// JavaScript program to implement Shanks
// Tonelli algorithm for finding
// Modular Square Roots
 
    let z = 0;
       
// utility function to find
// pow(base, exponent) % modulus
function pow1(base1,
    exponent, modulus)
{
    let result = 1;
    base1 = base1 % modulus;
    while (exponent > 0)
    {
        if (exponent % 2 == 1)
            result = (result * base1) % modulus;
        exponent = exponent >> 1;
        base1 = (base1 * base1) % modulus;
    }
    return result;
}
   
// utility function to find gcd
function gcd(a, b)
{
    if (b == 0)
        return a;
    else
        return gcd(b, a % b);
}
   
// Returns k such that b^k = 1 (mod p)
function order(p, b)
{
    if (gcd(p, b) != 1)
    {
        document.write("p and b are" +
                            "not co-prime." + "<br/>");
        return -1;
    }
   
    // Initializing k with first
    // odd prime number
    let k = 3;
    while (true)
    {
        if (pow1(b, k, p) == 1)
            return k;
        k++;
    }
}
   
// function return p - 1 (= x argument)
// as x * 2^e, where x will be odd
// sending e as reference because
// updation is needed in actual e
function convertx2e(x)
{
    z = 0;
    while (x % 2 == 0)
    {
        x /= 2;
        z++;
    }
    return x;
}
   
// Main function for finding
// the modular square root
function STonelli(n, p)
{
    // a and p should be coprime for 
    // finding the modular square root
    if (gcd(n, p) != 1)
    {
        System.out.prletln("a and p are not coprime");
        return -1;
    }
   
    // If below expression return (p - 1) then modular
    // square root is not possible
    if (pow1(n, (p - 1) / 2, p) == (p - 1))
    {
        document.write("no sqrt possible" + "<br/>");
        return -1;
    }
   
    // expressing p - 1, in terms of 
    // s * 2^e, where s is odd number
    let s, e;
    s = convertx2e(p - 1);
    e = z;
   
    // finding smallest q such that q ^ ((p - 1) / 2)
    // (mod p) = p - 1
    let q;
    for (q = 2; ; q++)
    {
        // q - 1 is in place of (-1 % p)
        if (pow1(q, (p - 1) / 2, p) == (p - 1))
            break;
    }
   
    // Initializing variable x, b and g
    let x = pow1(n, (s + 1) / 2, p);
    let b = pow1(n, s, p);
    let g = pow1(q, s, p);
   
    let r = e;
   
    // keep looping until b
    // become 1 or m becomes 0
    while (true)
    {
        let m;
        for (m = 0; m < r; m++)
        {
            if (order(p, b) == -1)
                return -1;
   
            // finding m such that b^ (2^m) = 1
            if (order(p, b) == Math.pow(2, m))
                break;
        }
        if (m == 0)
            return x;
   
        // updating value of x, g and b
        // according to algorithm
        x = (x * pow1(g, Math.pow(2,
                            r - m - 1), p)) % p;
        g = pow1(g, Math.pow(2, r - m), p);
        b = (b * g) % p;
   
        if (b == 1)
            return x;
        r = m;
    }
}
 
// Driver Code
 
     let n = 2;
   
    // p should be prime
    let p = 113;
   
    let x = STonelli(n, p);
   
    if (x == -1)
        document.write("Modular square" +
                        "root is not exist\n");
    else
        document.write("Modular square root of " +
                            n + " and " + p + " is " +
                            x + "\n");
 
</script>

Producción : 

Modular square root of 2 and 113 is 62

Para obtener más detalles sobre el algoritmo anterior, visite: 
http://cs.indstate.edu/~sgali1/Shanks_Tonelli.pdf
Para obtener detalles del ejemplo (2, 113), consulte: 
http://www.math.vt.edu/people/ brown/class_homepages/shanks_tonelli.pdf
Este artículo es una contribución de Utkarsh Trivedi. Escriba comentarios si encuentra algo incorrecto o si desea compartir más información sobre el tema tratado anteriormente.
 

Publicación traducida automáticamente

Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *