Pregunta 1. Encuentra los valores de las siguientes razones trigonométricas:
(i) sen 5π/3
Solución:
Tenemos, sen 5π/3
=sen (2π-π/3) [∵sen(2π-θ)=-senθ]
=-sin(π/3)
= – √3/2
(ii) sen 17π
Solución:
Tenemos, pecado 17π
⇒sen 17π=sen (34×π/2)
Dado que 17π se encuentra en el eje x negativo, es decir, entre el segundo y el tercer cuadrante
=sen 17π [∵ sin nπ=0]
= 0
(iii) tan11π/6
Solución:
Claramente, tan(11π/6) = tan ((12π-π)/6)
= bronceado (4π/2-π/6)
claramente, el ángulo se encuentra en el IV cuadrante en el que la función tangente es negativa y el múltiplo de π/2 es par.
= bronceado (4π/2-π/6)= -cot (π/6)
=-1/√3
(iv) coseno (-25π/4)
Solución:
La función coseno es una función par, por lo tanto,
coseno (-25π/4)=coseno (25π/4)
Ahora, 25π/4=(12×π/2+π/4)
25π/4 se encuentra en el cuadrante I e incluso múltiplo de π/2
coseno (25π/4)=coseno (12×π/2+π/4)=coseno π/4=1/√2
(v) bronceado (7π/4)
Solución:
Tenemos, 7π/4=(8π-π)/4 = 2π-π/4
=tan (2π-π/4) [∵ tan(2π-θ)=-tanθ]
=-tan π/4
=-1
(vi) sen 17π/6
Solución:
sen 17π/6= sen (3π-π/6)
=sen (2π+(π-π/6))
=sen (π-π/6) [∵ sin(2π+θ)=senθ]
=sen π/6 [∵ sin(π-θ)=senθ]
=1/2
(vii) cos 19π/6
Solución:
cos 19π/6 = cos (3π+(π+π/6))
= coseno (2π+(π+π/6))
=cos (π+π/6) [∵ cos(2π+θ)= cosθ)]
=-cos π/6 [∵ cos(π+θ)=-cosθ]
=-√3/2
(viii) pecado (-11π/6)
Solución:
pecado (-11π/6) = pecado (-(2π-π/6))
=sin (2π-π/6) [∵ sin(-θ)= -sinθ]
=-(-sin π/6) [∵ sin(2π-θ)= -sinθ]
= sen π/6
=1/2
(ix) cosec (-20π/3)
Solución:
cosec (-20π/3)= cosec (-(7π-π/3))
= cosec (7π-π/3) [∵ cosec(-θ) = -cosecθ]
= – cosec (2×3π+ (π-π/3))
= – cosec (π-π/3)
= – cosec π/3 [∵ cosec(π-θ)= cosecθ]
= – 2/√3
(x) bronceado (-13π/4)
Solución:
tan (-13π/4) = -tan (13π/4) [∵ tan(-θ)=-tanθ]
=-bronceado (3π+π/4)
=- tan (2π+(π+π/4) [∵ tan(2π+θ)=tanθ]
=-tan π/4 [∵ tan(π+θ)=tanθ]
= -1
(xi) cos 19π/4
Solución:
cos 19π/4 = cos (5π-π/4))
= cos (2×2π+(π-π/4)) [∵ cos(2nπ+θ)= cosθ , n ∈ N]
=cos (π-π/4) [∵ cos(π-θ)= -cosθ]
=-cos π/4
=-1/√2
(xii) pecado (41π/4)
Solución:
pecado (41π/4) = pecado (10π+π/4)
=sin (2×5π+π/4) [∵ sin(-θ)= -sinθ]
=sen π/4 [∵ sin(2π-θ)= -senθ]
=1/√2
(xiii) cos 39π/4
Solución:
cos 39π/4 = cos (10π-π/4))
= coseno (2×5π-π/4)
=cos π/4 [∵ cos(2nπ-θ)= cosθ , n ∈ N]
=1/√2
(xiv) pecado (151π/6)
Solución:
pecado (151π/6) = pecado (25π+π/6)
=sin (2×12π+ (π +π/6)) [∵ sin(2nπ+θ)= sinθ , n ∈ N]
=sin (π +π/6) [∵ sin(π+θ)= -sinθ]
=-sen π/6
=-1/2
Pregunta 2. Demuestra que:
(i) bronceado 225° cuna 405°+tan 765° cuna 675°=0
Solución:
Tomando LHS
bronceado 225° cuna 405°+bronceado 765° cuna 675°
= bronceado (π+π/4) cuna (2π+π/4)+tan (4π+π/4) cuna (4π-π/4)
=tan(π/4)×cot(π/4)+tan(π/4)×{-cot(π/4)} [∵ cot(4π-π/4)=-cot(π/4)]
=1×1+1×(-1)
=0 = RHS (por lo tanto probado)
(ii) sen (8π/3) cos (23π/6)+cos (13π/3) sen (35π/6)=1/2
Solución:
Tomando LHS
sen (8π/3) cos (23π/6)+cos (13π/3) sen (35π/6)
=sen (3π-π/3) cos (4π-π/6)+cos (4π+π/3) sen (6π-π/6)
=sin (π/3) cos (π/6)+cos (π/3) {-sin (π/6)} [∵ sin(6π-θ)= -sinθ]
=√3/2×√3/2+1/2×(-1/2)
=3/4-1/4
=2/4
=1/2= RHS (por lo tanto probado)
(iii) cos 24° + cos55° + cos125° + cos204° + cos300°=1/2
Solución:
Tomando LHS
cos 24° + cos 55° + cos 125° + cos 204° + cos 300°
= cos 24° – cos ( π+24°) + cos 55° + cos (π-55°) + cos ( 2π-π/3)
= cos 24° – cos 24° + cos 55° – cos 55° + cos π/3
= cos π/3
= 1/2 = RHS (por lo tanto probado)
(iv) tan (-225°) cot (-405°)-tan (-765°) cot (675°) = 0
Solución:
Tomando LHS
bronceado (-225°) cuna (-405°)-tan (-765°) cuna (675°)
=-tan 225° {-cot 405°}+tan 765° cuna 675°
= bronceado (π+π/4) cuna (2π+π/4)+tan (4π+π/4) cuna (4π-π/4)
=tan(π/4) cot(π/4)+tan(π/4)×{-cot(π/4)} [∵ cot(4π-π/4)=-cot(π/4)]
=1×1+1×(-1)
=1-1
=0 = RHS (por lo tanto probado)
(v) cos 570° sen 510° + sen (-330°) cos (-390°)=0
Solución:
Tomando LHS
cos 570° sen 510° + sen (-330°) cos (-390°)
=cos (3π+π/6) sin (3π-π/6) – sin 330° cos 390° [∵ sin(-θ)= -sinθ y cos(-θ)= cosθ]
=-cos π/6 sen π/6 + sen π/6 cos π/6 [∵ sen(2π-θ)= -sinθ]
=0=RHS (por lo tanto probado)
(vi) tan (11π/3)- 2sin (4π/6)-3/4cosec 2 (π/4)+4cos 2 (17π/6)=(3-4√3)/2
Solución:
Tomando LHS
tan (4π-π/3)- 2sen (2π/3)-3/4×(√2) 2 +4cos 2 (3π-π/6)
=-tan π/3- 2sin (π-π/3)-3/4×2+4cos 2 π/6 [∵ tan(nπ-θ)=-tanθ ∵cos(2nπ-θ)= -cosθ , n ∈ N]
=-√3 – 2sen π/3 -3/2+4×(√3/2) 2
=-√3 – 2×(√3/2) -3/2+4×(3/4)
=-√3 – √3 -3/2+3
=-2√3+(-3+6)/2
=-2√3+3/2
=(3-4√3)/2=RHS (Por lo tanto probado)
(vii) 3sen (π/6) seg (π/3)- 4sen (5π/6) cot (π/4)=1
Solución:
Tomando LHS
3sin (π/6) seg (π/3)- 4sin (5π/6) cot (π/4)
=3×(1/2)×2- 4sen (π-π/6)×1
=3 – 4sen π/6
=3-4×1/2
=3-2=1=RHS (por lo tanto probado)
Pregunta 3. Demuestra que:
(i)
Solución:
[∵tan(π/2+θ)= -cotθ]
= [∵seg(π/2+θ)= -cosecθ]
=1
=RHS (por lo tanto probado)
(ii) =2
Solución:
Tomando LHS
= [∵cot(π/2+θ)= -tanθ ∵cot(2π+θ)= cotθ]]
=(sec x+cot(π/2+x))/(secx-tanx)+1
=(seg x-tanx)/(segx-tanx)+1
=1+1
=2=RHS (por lo tanto probado)
{iii} =1
Solución:
Tomando LHS
[∵ tan(π/2-θ)= cotθ ∵sin(π/2+θ)= -cosθ]
= [∵ cotθ= cosθ/sinθ ∵ cosecθ= 1/sinθ]
=
= 1 = RHS (por lo tanto probado)
(iv) {1+cot x -seg(π/2+x)}{1+cot x + sec(π/2+x)}=2cot x
Solución:
Tomando LHS
{1+cot x -sec(π/2+x)}{1+cot x + sec(π/2+x)} [∵ sec(π/2+θ)= -cosecθ]
={1+cot x -(-cosec x)}{1+cot x – cosec x}
={(1+cot x) +cosec x}{(1+cot x) – cosec x}
=(1+cuna x) 2 -coseg 2 x
=1+cot 2 x+2cot x -cosec 2 x [∵ 1+cot 2 θ=cosec 2 θ]
=coseg 2 x+2cot x -coseg 2 x
=2cot x=RHS (por lo tanto probado)
(v) =1
Solución:
Tomando LHS
=
=1=RHS (por lo tanto probado)
Pregunta 4. Prueba que: sin 2 π/18+sin 2 π/9+sin 2 7π/18+sin 2 4π/9=2
Solución:
Tomando LHS
sen 2 π/18+sen 2 π/9+sen 2 7π/18+sen 2 4π/9
=sen 2 (π/2-4π/9)+sen 2 4π/9+sen 2 π/9+sen 2 (π/2-π/9)
=cos 2 4π/9+sen 2 4π/9+sen 2 π/9+cos 2 π/9
=1+1=2=RHS (por lo tanto probado)
Pregunta 5. Demuestra que: sec(3π/2-x)sec(x-5π/2)+tan(5π/2+x)tan(x-3π/2)=-1
Solución:
Tomando LHS:
segundo(3π/2-x)segundo(x-5π/2)+bronceado(5π/2+x)bronceado(x-3π/2)
=sec(3π/2-x)sec(-(5π/2-x))+tan(5π/2+x)tan(-(3π/2-x)) [∵sec(-θ)=secθ]
=-cosec x seg(5π/2-x)-cot x (-tan(3π/2-x))
=-cosec x cosec x-cot x (-cot x)
=-cosec 2 x + cot 2 x
=-cosec 2 x + cosec 2 x – 1 [∵1+cot 2 θ=cosec 2 θ]
=-1=RHS (por lo tanto probado)
Pregunta 6. En un △ABC, prueba que:
(i) coseno (A+B) + coseno C = 0
Solución:
A+B+C=π
A+B=π-C ———-(1)
Tomando LHS
porque (A+B) + porque C
Poniendo el valor de A+B
cos (π-C) + cos C [∵ cos(π-θ)= -cosθ]
=-cos C+ cos C
=0 = RHS (por lo tanto probado)
(ii) cos (A+B)/2=sen C/2
Solución:
Tomando LHS
porque (A+B)/2
Poniendo el valor de A+B de (1)
=cos (π-C)/2
=cos(π/2-C/2) [∵ cos(π/2+θ)= senθ]
=sen C/2 = RHS (por lo tanto probado)
(iii) bronceado (A+B)/2=cot C/2
Solución:
Tomando LHS
bronceado (A+B)/2
Poniendo el valor de A+B de (1)
= bronceado (π-C)/2
=tan (π/2-C/2) [∵ tan(π/2-θ)= cotθ]
=cot C/2 = RHS (Por lo tanto Probado)
Pregunta 7. Si A,B,C,D son los ángulos de un cuadrilátero cíclico, tomados en orden, demuestre que
cos(180°-A)+cos(180°+B)+cos(180°+C)-sen(90°+D)=0
Solución:
Como A, B, C, D son los ángulos de un cuadrilátero cíclico
Por lo tanto, A+B+C+D=2π
o A+B=π o C+D=π
A=π-B también C=π-D
Tomando LHS
cos(180°-A)+cos(180°+B)+cos(180°+C)-sen(90°+D)
=cos(π-(π-B))+cos(π+B)+cos(π+(π-D))-sin(π/2+D) [∵ cos(π+θ)= -cosθ]
=cos B +(-cos B) +cos D -cos D
=cos B – cos B +0
=0 =RHS (por lo tanto probado)
Pregunta 8. Halla x a partir de las siguientes ecuaciones
(i) cosec (π/2+θ) + x cos θ cot(π/2+θ)=sin(π/2+θ)
Solución:
Tenemos,
cosec (π/2+θ) + x cos θ cot(π/2+θ)=sin(π/2+θ)
⇒ sec θ + x cos θ (-tanθ)=cos θ
⇒1/cosθ – x cos θ (senθ/cosθ)=cos θ
⇒1/cosθ – x senθ=cos θ
⇒1-x senθcosθ/cosθ =cos θ
⇒1-x senθcosθ =cos 2 θ
⇒1-cos 2 θ =x senθcosθ
⇒sen 2 θ =x senθcosθ
⇒x=senθ/cosθ
⇒x=tanθ
(ii) x cot (π/2+θ) + tan (π/2+θ)sen θ+ cosec(π/2+θ)=0
Solución:
Tenemos,
x cot (π/2+θ) + tan (π/2+θ)sen θ+ cosec(π/2+θ)=0
⇒-x tan θ – cot θ sen θ+ sec θ=0
⇒-x sen θ/cos θ – (cos θ/sen θ) sen θ+ 1/cos θ=0
⇒-x sen θ/cos θ – cos θ + 1/cos θ=0
⇒(-x sen θ – cos 2 θ + 1)/cos θ=0
⇒-x sen θ +1- cos 2 θ =0
⇒-x sen θ + sen 2 θ =0
⇒x sen θ = sen 2 θ =0
⇒x = sen θ
Pregunta 9. Demostrar que:
(i) tan 4π – cos (3π/2)-sen (5π/6)cos (2π/3)=1/4
Solución:
Tomando LHS
tan 4π – cos (3π/2)-sen (5π/6)cos (2π/3) [∵ tan nπ= 0, ∀ n∈ Z ]
=0- coseno (π+π/2)-sen (π-π/6)coseno(π/2-π/6)
=0- (cos π/2)- (sen π/6)(-sen π/6)
=0-0+sen 2 π/6
=(1/2) 2
=1/4=RHS (por lo tanto probado)
(ii) sen (13π/3) sen (8π/3) + cos (2π/3) sen (5π/6)=1/2
Solución:
Tomando LHS
sen (13π/3) sen (8π/3) + coseno (2π/3) sen (5π/6)
=sin (4π+π/3) sin (3π-π/3) + coseno (π/2+π/6)sin (π-π/6) [∵ sin (4π+θ)= sinθ & sin (3π -θ)= senθ]
=sen π/3 sen π/3 + (-sen π/6) sen π/6
=(√3/2)×(√3/2)-(1/2)×(1/2)
=3/4-1/4
=2/4=1/2=RHS (por lo tanto probado)
(iii) sen (13π/3) sen (2π/3) + cos (4π/3) sen (13π/6)=1/2
Solución:
Tomando LHS
sen (13π/3) sen (2π/3) + coseno (4π/3) sen (13π/6)
=sen (4π+π/3) sen (π/2-π/6) + coseno (π+π/6)sen (2π+π/6)
= sen π/3 cos π/6 – cos π/3 sen π/6
=(√3/2)×(√3/2)-(1/2)×(1/2)
=3/4-1/4
=2/4=1/2=RHS (por lo tanto probado)
(iv) sen (10π/3) cos (13π/6) + cos (8π/3) sen (5π/6)=-1
Solución:
Tomando LHS
sen (10π/3) cos (13π/6) + cos (8π/3) sen (5π/6)
=sen (3π+π/3) coseno (2π+π/6) + coseno (3π-π/3)sen (π-π/6)
=-sin (π/3) cos (π/6) + cos π/3 (- sin π/6) [∵ sin (3π+θ)= -sinθ & cos (3π-θ)= -cosθ]
=(-√3/2)×(-√3/2)-(1/2)×(1/2)
=-3/4-1/4
=-4/4=-1=RHS (por lo tanto probado)
(V) bronceado (5π/4) cuna (9π/4) + bronceado (17π/4) cuna (15π/4)=0
Solución:
Tomando LHS
bronceado (5π/4) cuna (9π/4) + bronceado (17π/4) cuna (15π/4)
= bronceado (π+π/4) cuna (2π+π/4) + bronceado (4π+π/4) cuna (4π-π/4)
=(tan π/4) (cot π/4) + (tan π/4) (-cot π/4)
=1.1+1.(-1)
=1-1=0 RHS (por lo tanto probado)
Publicación traducida automáticamente
Artículo escrito por rahulsharma1771996 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA