Clase 12 Soluciones RD Sharma – Capítulo 11 Diferenciación – Ejercicio 11.7 | Serie 1

Pregunta 1. Encuentra  \frac{dy}{dx} , cuando: x = en 2 y y = 2 en

Solución:

Dado que x = en 2 , y = 2 en

Asi que,

\frac{dx}{dt}=\frac{d}{dt}(at^2)=2at\\ \frac{dy}{dt}=\frac{d}{dt}(2at)=2a

Por lo tanto,

\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}=\frac{2a}{2at}=\frac{1}{t}

Pregunta 2. Encuentra  \frac{dy}{dx} , cuando: x = a(θ + sinθ) y y = a(1 – cosθ)

Solución:

Aquí,

x = a(θ + senθ)

Derivando con respecto a θ,

\frac{dx}{dθ}=a(1+cosθ)\ \ \ ..........(1)

y,

y = a(1 – cosθ)

Derivarlo con respecto a θ,

\frac{dy}{dθ}=a(θ+sinθ)\\ \frac{dy}{dθ}=asinθ\ \ \ \ .....(2)

Usando la ecuación (1) y (2),

\frac{dy}{dx}=\frac{\frac{dy}{dθ}}{\frac{dx}{dθ}}\\ =\frac{asinθ}{a(1-cosθ)}\\ =\frac{\frac{2sinθ}{2}\frac{cosθ}{2}}{\frac{2sin^2θ}{2}},\ \ \ \ \ \ \ \left\{Since,\ 1-cosθ=\frac{2sin2θ}{2},\frac{2sinθ}{2}\frac{cosθ}{2}=sinθ\right\}\\ =\frac{dy}{dx}=\frac{tanθ}{2}

Pregunta 3. Encuentra  \frac{dy}{dx} , cuando: x = acosθ y y = bsinθ

Solución:

Entonces x = acosθ y y = bsinθ

Después,

\frac{dx}{dθ}=\frac{d}{dθ}(acosθ)=-asinθ\\ \frac{dy}{dθ}=\frac{d}{dθ}(bsinθ)=bcosθ

Por lo tanto,

\frac{dy}{dx}=\frac{\frac{dy}{dθ}}{\frac{dx}{dθ}}=\frac{bcosθ}{-asinθ}=-\frac{b}{a}cotθ

Pregunta 4. Encuentra  \frac{dy}{dx} , cuando: x = a e Θ (sinθ -cosθ), y = ae Θ (sinθ +cosθ)

Solución:

Aquí,

x = ae Θ (senθ – cosθ)

Derivando con respecto a θ,

\frac{dx}{dθ}=a[e^θ\frac{d}{dθ}(sinθ-cosθ)+(sinθ-cosθ)\frac{d}{dθ}(e^θ)]\\ =a[e^θ(cosθ+sinθ)+(sinθ-cosθ)e^θ]\\ \frac{dx}{dθ}=a[2e^θsinθ]\ \ \ \ \ \ .......(1)

Y,

y = ae Θ (senθ+cosθ)

Derivando con respecto a θ

\frac{dy}{dθ}=a[e^θ\frac{d}{dθ}(sinθ+cosθ)+(sinθ+cosθ)\frac{d}{dθ}(e^θ)]\\ =a[e^θ(cosθ-sinθ)+(sinθ+cosθ)e^θ]\\ \frac{dx}{dθ}=a[2e^θcosθ]\ \ \ \ \ \ .......(2)

Dividiendo la ecuación (2) por la ecuación (1)

\frac{\frac{dy}{dθ}}{\frac{dx}{dθ}}=\frac{a(2e^θ cosθ)}{a(2e^θ sinθ)}\\ \frac{dy}{dx}=cotθ

Pregunta 5. Halla  \frac{dy}{dx} , cuando: x = bsen 2 θ y y = acos 2 θ

Solución:

Aquí,

x = bsen 2 θ y y = acos 2 θ

Después,

\frac{d}{dθ}=\frac{d}{dθ}(bsin^2θ)=2bsinθ cosθ\\ \frac{dy}{dθ}=\frac{d}{dθ}(acos^2θ)=-2acosθ sinθ \\ \frac{\frac{dy}{dθ}}{\frac{dx}{dθ}}=\frac{-2acosθ sinθ}{2bsinθ cosθ}=-\frac{a}{b}\\

Pregunta 6. Encuentra  \frac{dy}{dx} , cuando: x = a(1 – cos θ) y y = a(θ +senθ) en θ =\frac{\pi}{2}

Solución:

Aquí,

x = a(1 – cosθ) y y = a(θ + senθ)

Después,

\frac{dx}{dθ}=\frac{d}{dθ}[a(1-cosθ)]=asinθ\\ \frac{dy}{dθ}=\frac{d}{dθ}[a(θ +sinθ)]=a(1+cosθ)

Por lo tanto,

\frac{dy}{dx}=\frac{\frac{dy}{dθ}}{\frac{dx}{dθ}}=\frac{a(1+cosθ)}{a(sinθ)}|_{θ =\frac{x}{2}}\\ =\frac{a(1+0)}{a}=1

Pregunta 7. Encuentra  \frac{dy}{dx} , cuando:  x=\frac{e^t+e^{-t}}{2} yy=\frac{e^t-e^{-t}}{2}

Solución:

Aquí,

x=\frac{e^t+e^{-t}}{2}

Derivarlo con respecto a t,

\frac{dx}{dt}=\frac{1}{2}\left[\frac{d}{dt}(e^t)+\frac{d}{dt}(e^{-t})\right]\\ =\frac{1}{2}\left[e^t+e^{-t}\frac{d}{dt}(e^{-t})\right]\\ \frac{dx}{dt}=\frac{1}{2}(e^t-e^{-t})=y\ \ \ ......(1)

y,

y=\frac{e^t-e^{-t}}{2}

Derivando con respecto a t,

\frac{dy}{dt}=\frac{1}{2}\left[\frac{d}{dt}(e^t)-\frac{d}{dt}(e^{-t})\right]\\ =\frac{1}{2}\left[e^t-e^{-t}\frac{d}{dt}(e^{-t})\right]\\ \frac{dx}{dt}=\frac{1}{2}(e^t+e^{-t})=x
\frac{dy}{dt}=\frac{1}{2}\left[\frac{d}{dt}(e^t)-\frac{d}{dt}(e^{-t})\right]\\ =\frac{1}{2}\left[e^t-e^{-t}\frac{d}{dt}(e^{-t})\right]\\ \frac{dx}{dt}=\frac{1}{2}(e^t+e^{-t})=x\ \ \ \ .....(2)

Dividiendo la ecuación (2) y (1)

\frac{\frac{dy}{dt}}{\frac{dx}{dt}}=\frac{x}{y}\\ \frac{dy}{dt}=\frac{x}{y}

Pregunta 8. Encuentra  \frac{dy}{dx} , cuando:  x=\frac{3at}{1+t^2} yy=\frac{3at^2}{1+t^2}

Solución:

Aquí,

x=\frac{3at}{1+t^2}

Derivando con respecto a t usando la regla del cociente,

\frac{dx}{dt}=\left[\frac{(1+t^2)\frac{d}{dt}(3at)-3at\frac{d}{dt}(1+t^2)}{(1+t^2)^2}\right]\\ =\left[\frac{(1+t^2)(3a)-3at(2t)}{(1+t^2)^2}\right]\\ =\left[\frac{3a+3at^2-6at^2}{(1+t^2)^2}\right]\\ =\left[\frac{3a-3at^2}{(1-t^2)^2}\right]\\ \frac{dx}{dt}=\frac{3a(1-t^2)}{(1+t^2)^2}\ \ \ \ ....(1)

y,

y=\frac{3at^2}{1+t^2}

Derivando con respecto a t usando la regla del cociente,

\frac{dy}{dt}=\left[\frac{(1+t^2)\frac{d}{dt}(3at^2)-3at^2\frac{d}{dt}(1+t^2)}{(1+t^2)^2}\right]\\ =\left[\frac{(1+t^2)(6at)-(3at^2)(2t)}{(1+t^2)^2}\right]\\ =\left[\frac{6at+6at^3-6at^3}{(1+t^2)^2}\right]\\ \frac{dy}{dt}=\frac{6at}{(1+t^2)^2}\ \ \ \ ....(2)

Dividiendo la ecuación (2) por (1)

\frac{\frac{dy}{dt}}{\frac{dx}{dt}}=\frac{6at}{(1+t^2)^2}\times\frac{(1+t^2)^2}{3a(1-t^2)}\\ \frac{dy}{dt}=\frac{2t}{1-t^2}

Pregunta 9. Si x e y están conectados paramétricamente por la ecuación, sin eliminar el parámetro, encuentre \frac{dy}{dx} cuando: x = a(cosθ +θsinθ), y = a(sinθ -θcosθ)

Solución:

Las ecuaciones dadas son

x = a(cosθ +θ sinθ) y y = a(sinθ -θcosθ)

Después,

\frac{dx}{dθ}=a\left[\frac{d}{dθ}cosθ +\frac{d}{dθ}(θ sinθ)\right]\\ =a\left[-sinθ +θ \frac{d}{dθ}(sinθ)+sinθ \frac{d}{dθ}(θ)\right]

= a[-sinθ + θcosθ + sinθ] = aθcosθ

\frac{dy}{dθ}=a\left[\frac{d}{dθ}sinθ +\frac{d}{dθ}(θ cosθ)\right]\\ =a\left[cosθ -\{θ \frac{d}{dθ}(cosθ)+cosθ \frac{d}{dθ}(θ)\}\right]

= a[cosθ +θsenθ -cosθ]

= aθsenθ

Por lo tanto,

\frac{dy}{dx}=\frac{\left(\frac{dy}{dθ}\right)}{\left(\frac{dx}{dθ}\right)}=\frac{aθsinθ}{aθ cosθ}=tanθ

Pregunta 10. Encuentra  \frac{dy}{dx} , cuando:  x=e^θ \left(θ +\frac{1}{θ}\right) yy=e^{-θ} \left(θ -\frac{1}{θ}\right)

Solución:

Aquí,

x=e^θ \left(θ +\frac{1}{θ}\right)

Derivando con respecto a θ usando la regla del producto,

\frac{dx}{dθ}=e^θ \frac{d}{dθ}\left(θ +\frac{1}{θ}\right)+\left(θ +\frac{1}{θ}\right)\frac{d}{dθ}(e^θ)\\ =e^θ \left(1-\frac{1}{θ^2}\right)+\left(\frac{θ ^2+1}{θ}\right)e^θ \\ =e^θ \left(\frac{θ ^2-1+θ ^3+θ}{θ ^2}\right)\\ \frac{dx}{dθ}=\frac{e^θ (θ ^3+θ ^2+θ -1)}{θ ^2}\ \ \ .....(1)

y,

y=e^θ \left(θ -\frac{1}{θ}\right)

Derivando con respecto a θ usando la regla del producto y la regla de la string

\frac{dy}{dθ}=e^{-θ} \frac{d}{dθ}\left(θ -\frac{1}{θ}\right)+\left(θ -\frac{1}{θ}\right)\frac{d}{dθ}(e^{-θ})\\ =e^{-θ} \left(1+\frac{1}{θ^2}\right)+\left(θ -\frac{1}{θ}\right)e^{-θ} \\ =e^{-θ} \left(1+\frac{1}{θ ^2}-θ +\frac{1}{θ}\right)\\ \frac{dy}{dθ}=e^{-θ}\left(\frac{θ ^2+1 -θ^3 +θ}{θ ^2}\right)\\ \frac{dy}{dθ}=e^{-θ}\left(\frac{-θ ^3+θ ^2+θ +1}{θ ^2}\right)\ \ \ \ ......(2)

Publicación traducida automáticamente

Artículo escrito por yashchuahan y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *