Clase 12 Soluciones RD Sharma – Capítulo 19 Integrales indefinidas – Ejercicio 19.19

Pregunta 1. ∫ x/(x 2 + 3x + 2) dx

Solución:

Dado que I = ∫ x/(x 2 + 3x + 2) dx

Sea x = md/dx (x 2 + 3x + 2) + n

= m(2x + 3) + norte

x = (2m)x + (3λ + n)

Al comparar los coeficientes de x,

2m = 1

metro = 1/2

3m + norte = 0

3(1/2) + norte = 0

n = -3/2

yo = ∫(1/2(2x + 3) – 3/2)/(x 2 + 3x + 2) dx

= 1/2 ∫(2x + 3)/(x 2 + 3x + 2) dx – 3/2 ∫1/(x 2 + 3x + 2) dx

= 1/2 ∫(2x + 3)/(x 2 + 3x + 2) dx – 3/2 ∫1/(x 2 + 2x(3/2) + (3/2) 2 – (3/2) 2 + 2) dia

= 1/2 ∫(2x + 3)/(x 2 + 3x + 2) dx – 3/2 ∫1/((x + 3/2) 2 –(1/2) 2 ) dx

= 1/2log|x 2 + 3x + 2| – (3/2) × (1/2 × (1/2))log|(x + 3/2 – 1/2)/(x + 3/2 + 1/2)| +c

Como sabemos que ∫1/(a 2 – x 2 )dx = 1/2a log|(x – a)/(x + a)| +c]

Por lo tanto, yo = 1/2 log|x 2 + 3x + 2| – (3/2) × (1/2 × (1/2))log|(x + 1)/(x + 2)| +c

Pregunta 2. ∫(x + 1)/(x 2 + x + 3) dx

Solución:

Dado que I = ∫(x + 1)/(x 2 + x + 3) dx

Consideremos x + 1 = md/dx(x 2 + x + 3) + n

x + 1 = m(2x + 1) + norte

x + 1 = (2m)x + (m + n)

Al comparar el coeficiente de x,

2m = 1 

metro = 1/2

metro + norte = 1

(1/2) + norte = 1

norte = 1/2

Ahora,

yo = ∫(1/2(2x + 1) + 1/2)/(x 2 + x + 3) dx

=1/2∫(2x + 1)/(x 2 + x + 1) dx + 1/2∫1/(x 2 + 2x(1/2) + (1/2)²-(1/2) ²+3) dx

= 1/2∫(2x + 1)/(x 2 + x + 1) dx + 1/2∫1/((x + 1/2) 2 + (11/4)) dx

= 1/2 ∫(2x + 1)/(x 2 + x + 1) dx + 1/2 ∫1/((x + 1/2) 2 + (√11/2) 2 ) dx

= 1/2 log|x 2 + x + 3| + (1/2) * (1/(√11/2)) bronceado -1 ((x + 1/2)/(√11/2)) + c

Como sabemos que ∫1/(x 2 + a 2 ) dx = 1/a tan -1 (x/a) + c 

Por lo tanto, yo = 1/2 log|x 2 + x + 3| + 1/√11 bronceado -1 ((2x + 1)/(√11)) + c

Pregunta 3. ∫ (x – 3)/(x 2 + 2x – 4) dx

Solución:

Dado que I = ∫(x – 3)/(x 2 + 2x – 4) dx

Consideremos x – 3 = md/dx (x 2 + 2x – 4) + n

= m(2x + 2) + norte

x – 3 = (2m)x + (2m + n)

Al comparar los coeficientes de x,

2m = 1

metro = 1/2

2m + n = -3

2(1/2) + n = -3

n = -4

Asi que,

yo = ∫(1/2(2x + 2) – 4)/(x 2 + 2x – 4) dx

= 1/2 ∫(2x + 2)/(x 2 + 2x – 4) dx – 4∫ 1/(x 2 + 2x + (1) 2 – (1) 2 – 4) dx

= 1/2 ∫(2x + 2)/(x 2 + 2x – 4) dx – 4∫ 1/((x + 1) 2 – (√5)) dx  

Como sabemos que ∫1/(x 2 – a 2 ) dx = 1/2a log|(x – a)/(x + a)| +c

= 1/2 log⁡|x 2 + 2x – 4| – 4 × 1/(2√5) log⁡|(x + 1 – √5)/(x + 1 + √5)| +c

Por lo tanto, yo = 1/2 log⁡|x 2 + 2x – 4| – 2/√5 log⁡|(x + 1 – √5)/(x + 1 + √5)| +c

Pregunta 4. ∫(2x – 3)/(x 2 + 6x + 13) dx

Solución :

Dado que I = ∫ (2x – 3)/(x 2 + 6x + 13) dx

Consideremos 2x – 3 = md/dx (x 2 + 6x + 13) + n

= m(2x + 6) + norte

2x – 3 = (2m)x + (6m + n)        

Al comparar el coeficiente de x, obtenemos 

2m = 2

metro = 1

6m + n = -3

6 * 1 + n = -3

n = -9

Ahora,

= ∫(1 * (2x + 6) – 9)/(x 2 + 6x + 13) dx

= ∫(2x + 6)/(x 2 + 6x + 13) dx + ∫(-9)/(x 2 + 2 * (3) * x + (3) 2 – (3) 2 + 13) dx

= ∫(2x + 6)/(x 2 + 6x + 13) dx -9 ∫1/((x + 3) 2 + (2)) dx

= logaritmo|(x 2 + 6x + 13)| – 9 * (1/2) bronceado -1 ((x + 3)/2) + c

Por lo tanto, I = log|(x 2 + 6x + 13)| – 9 × (1/2) bronceado -1 ((x + 3)/2) + c

Pregunta 5. ∫x 2 /(x 2 + 7x + 10) dx

Solución:

Dado que I = ∫x 2 /(x 2 + 7x + 10) dx

= ∫{1 – (7x + 10)/(x 2 + 7x + 10)}dx

yo = x – ∫(7x + 10)/(x 2 + 7x + 10) dx + c 1    ……..(i)

Sea I 1 = ∫(7x + 10)/(x 2 + 7x + 10) dx

Sea 7x + 10 = md/dx (x 2 + 7x + 10) + n

= m(2x + 7) + norte

7x + 10 = (2m)x + 7m + n

Al comparar los coeficientes de potencias iguales de x,

7 = 2m

metro = 7/2

7m + n = 10

7(7/2) + n = 10

n = -29/2

Entonces, l = ∫(1/6(6x – 4) – 1/3)/(3x 2 – 4x + 3) dx

= 1/6 ∫(6x – 4)/(3x 2 – 4x + 3) dx – 1/9 ∫1/(x 2 – 4/3x + 1) dx

= 1/6 ∫(6x – 4)/(3x 2 – 4x + 3) dx – 1/9 ∫1/(x 2 – 2x(2/3) + (2/3) 2 – (2/3) 2 + (2) 2 ) dx

= 1/6 ∫(6x – 4)/(3x 2 – 4x + 3) dx – 1/9 ∫1/(x – 2/3) 2 + (√5/2)) dx

= 1/6log|(3x 2 – 4x + 3) | – ((1/9) × 1/(√5/3)) tan((x – 2/3)/(√5/3)) + c

Por lo tanto, yo = 1/6log|(3x 2 – 4x + 3)| – (√5/15)tan -1 ((3x – 2)/√5) + c

Pregunta 6. ∫2x/(2 + x – x 2 ) dx

Solución:

Dado que I = ∫2x/(2 + x – x 2 ) dx

Ahora,

2x = m(d/dx(2 + x + x 2 )) + norte

2x = m(-2x + 1) + n

Ahora igualando el coeficiente de obtendremos m, n

m = -1,

norte = 1

∫2x/(2 + x – x 2 ) dx

= ∫(m(-2x + 1) + n)/(2 + x – x 2 ) dx

= ∫(-1(-2x + 1) + 1)/(2 + x – x 2 ) dx

= ∫(-1(-2x + 1))/(2 + x – x 2 ) dx + 1/(2 + x – x 2 ) dx

= -log⁡|2 + x – x 2 | + ∫1/(2 + x – x 2 ) dx

= -log⁡|2 + x – x 2 | – ∫1/(x 2 – x – 2) dx

= -log⁡|2 + x – x 2 – ∫1/(x 2 – x(1/2)(2) + (1/2) – (1/2) – 2) dx

= -log⁡|2 + x – x 2 | + ∫1/((x – 1/2) 2 – (3/2) 2 ) dx

= -log⁡|2 + x – x 2 | – 1/3 log|((x – 1/2) – (3/2))/((x – 1/2) + (3/2))| +c

Por lo tanto, yo = -log⁡|2 + x – x 2 | – 1/3 log⁡|(x – 2)/(x + 1)| +c

Pregunta 7. ∫(1 – 3x)/(3x 2 + 4x + 2) dx

Solución:

Dado que I = ∫(1 – 3x)/(3x 2 + 4x + 2) dx

Consideremos 1 – 3x = md/dx (3x 2 + 4x + 2) + n

= m(6x + 4) + norte – 11 – 3x = (6m)× + (4λ + norte)

Al comparar los coeficientes de lx,

6m = -3

 metro = -1/2

4m + norte = 1

 4(-1/2) + norte = 1

norte = 3

yo = ∫(-1/2(6x + 4) + 3)/(3x 2 + 4x + 2) dx

= -1/2 ∫ (6x + 4)/(3x 2 + 4x + 2) dx + 3∫1/(3x 2 + 4x + 2) dx

= -1/2 ∫ (6x + 4)/(3x 2 + 4x + 2) dx + 3/3 ∫1/(x 2 + 4/3x + 2/3) dx

= -1/2 ∫ (6x + 4)/(3x 2 + 4x + 2) dx + ∫1/(x 2 + 2x(2/3) + (2/3) 2 – (2/3) 2 + (2/3) dia

= -1/2 ∫ (6x + 4)/(3x 2 + 4x + 2) dx + ∫1/((x + 2/3) 2 + 2/9) dx

= -1/2 ∫ (6x + 4)/(3x 2 + 4x + 2) dx + ∫1/((x + 2/3) 2 + (√2/3) 2 ) dx

= -1/2 log|(3x 2 + 4x + 2) | + 3/√2tan -1 ((x + 2/3)/(√2/3)) + c

Por lo tanto, yo = -1/2 log|(3x 2 + 4x + 2)| + 3/√2tan -1 ((3x + 2)/√2) + c

Pregunta 8. ∫(2x + 5)/(x 2 – x – 2) dx

Solución:

Dado que I = ∫(2x + 5)/(x 2 – x – 2) dx

Sea 2x + 5 = md/dx (x 2 – x – 2) + n

= m(2x – 1) + n

2x + 5 = (2m)x – m + n

Al comparar los coeficientes de x,

2m = 2

metro = 1

-m + n = 5

-1 + n = 5

norte = 6

Asi que,

yo = ∫((2x – 1) + 6)/(x 2 – x – 2) dx

= ∫ ((2x – 1))/(x 2 – x – 2) dx + 6∫1/(x 2 – 2x(1/2) + (1/2) 2 – (1/2) 2 – 2 ) dx

= ∫ (2x – 1)/(x 2 – x – 2) dx + 6∫1/((x – 1/2) 2 – 9/4) dx

= ∫ (2x – 1)/(x 2 – x – 2) dx + 6∫1/((x – 1/2) 2 – (3/2) 2 ) dx

= log⁡|x 2 – x – 2| + 6/2(3/2) log⁡|(x – 1/2 – 3/2)/(x – 1/2 + 3/2)| +c

Como sabemos que ∫1/(x 2 – a 2 ) dx = 1/2a log⁡|(x – a)/(x + a)| +c

Por lo tanto, yo = log⁡|x 2 – x – 2| + 2log⁡|(x – 2)/(x + 1)| +c

Pregunta 9. ∫ (ax 3 + bx)/(x 4 + c 2 ) dx

Solución:

Dado que I = ∫(ax 3 + bx)/(x 4 + c 2 ) dx

Consideremos ax 3 + bx = md/dx (x 4 + c 2 ) + n

hacha 3 + bx = n(4x 3 ) + n

Al comparar los coeficientes de x,

4m = un

metro = un/4

y

norte = 0

yo = ∫(a/4 (4x 3 ) + bx)/(x 4 + c 2 ) dx

= a/4 ∫(4x 3 )/(x 4 + c 2 ) dx + b∫x/((x 2 ) 2 + c 2 ) dx

= a/4 ∫(4x 3 )/(x 4 + c 2 ) dx + b/2 ∫2x/((x 2 ) 2 + c 2 ) dx

= a/4 log⁡|x 4 + c 2 | + b/2 I 1    ……..(i)

Ahora,

yo 1 = ∫2x/((x 2 ) 2 + c 2 ) dx

Ponga x 2 = t

2xdx = dt

yo 1 = ∫1/((t) 2 + c 2 ) dx

= 1/c tan -1 ⁡(t/c) + c 1

 l 1 = 1/C tan -1 ⁡(x 2 /c) + c 1         …………(ii)

Ahora usando la ecuación (i) y (ii) obtenemos,

Por lo tanto, I = a/4 log|x 4 + c 2 | + b/2c tan(x 2 /c) + b

Pregunta 10. ∫(x + 2)/(2x 2 + 6x + 5) dx

Solución:

Dado que I = ∫(x + 2)/(2x 2 + 6x + 5) dx

Consideremos x + 2 = md/dx (2x 2 + 6x + 5) + n

= m(4x + 6) + n

x + 2 = (4m)x + (6m + n)

Al comparar los coeficientes de x,

Asi que,

4m = 1

metro = 1/4

6m + norte = 2

6(1/4) + norte = 2

norte = 1/2

yo = ∫(1/4(4x + 6)+1/2)/(2x 2 + 6x + 5) dx)

=1/4 ∫(4x + 6)/(2x 2 + 6x + 5) dx + 1/2 ∫1/(2x 2 + 6x + 5) dx

=1/4 ∫(4x + 6)/(2x 2 + 6x + 5) dx + 1/4 ∫1/(x 2 + 3x + 5/2) dx

=1/4 ∫(4x + 6)/(2x 2 + 6x + 5) dx + 1/4 ∫1/(x 2 + 2x(3/2) + (3/2) 2 – (3/2) 2 + 5/2) dx

=1/4 ∫(4x + 6)/(2x 2 + 6x + 5) dx + 1/4 ∫1/((x + 3/2) 2 + 1/4) dx

=1/4 ∫(4x + 6)/(2x 2 + 6x + 5) dx + 1/4 ∫1/((x + 3/2) 2 + (1/2) 2 ) dx

=1/4 ∫(4x + 6)/(2x 2 + 6x + 5) dx + 1/4 × (1/(1/2))tan -1 ⁡((x + 3/2)/(1/ 2)) + c

Como sabemos que ∫1/(x 2 + a 2 ) dx = 1/a tan -1 ⁡(x/a) + c

Por lo tanto, yo = 1/4 log|2x 2 + 6x + 5| + 1/2 bronceado -1 (2x + 3) + c

Pregunta 11. ∫((3sin⁡x – 2)cos⁡x)/(5 – cos 2 ⁡x – 4sin⁡x) dx

Solución:

Dado que I = ∫((3sin⁡x – 2)cos⁡x)/(5 – cos 2 x – 4sin⁡x) dx

= ∫((3sin⁡x – 2)cos⁡x)/(5 – (1 – sin 2 ⁡x) – 4sin⁡x) dx

= ∫((3sen⁡x – 2)sen⁡x)/(5 – 1 + sen 2 x – 4sen⁡x) dx)

Ahora sustituya sin⁡x = t en la ecuación anterior

cos⁡xdx = dt

Asi que, 

yo = ∫(3t – 2)/(4 + t 2 – 4t) dt

= ∫((3t – 2))/(t 2 – 4t + 4) dt

= ∫(3t – 2)/(t – 2) 2 dt

Ahora integra fracciones parciales.

(3t – 2)/((t – 2) 2 ) = A/((t – 2)) + B/((t – 2) 2 )

= (A(t – 2) + B)/((t – 2) 2 )

= (En – 2A + B)/((t – 2) 2 )

3t – 2 = En – 2A + B

Al comparar los coeficientes tenemos, A = 3

y -2A + B = -2

Ahora, al sustituir el valor de A = 3 en la ecuación anterior,

-2 × 3 + B = -2

-6 + B = -2

B = 6 – 2

B = 4

Entonces, yo = ∫(3t – 2)/(t – 2) 2 dt 

= ∫(3t – 2)/(t – 2) dt + ∫4/(t – 2) 2 dt

= 3log|t – 2| – 4(1/(t – 2)) + c

= 3log|t – 2| – 4(1/(t – 2)) + c

Ahora pon el valor de t = senx, tenemos ,

I = 3log|senx – 2| – 4(1/(senx – 2)) + c

Pregunta 12. ∫(5x – 2)/(1 + 2x + 3x 2 ) dx

Solución:

Dado que I = ∫(5x – 2)/(1 + 2x + 3x 2 ) dx

Consideremos 5x – 2 = A d/dx (1 + 2x + 3x 2 ) + B

5x – 2 = A(2 + 6x) + B

5x – 2 = 6 × A + 2A + B

Al comparar el Coeficiente tenemos, 6A = 5 y 2A + B = -2

A = 5/6

Al sustituir el valor de A en 2A + B = -2, tenemos n, 

2 * 5/6 + B = -2

10/6 + B = -2

B = -2 – 10/6

B = (-12 – 10)/6

B = (-22)/6

B = (-11)/3

5x – 2 = 5/6(2 + 6x) – 11/3

Entonces, I = ∫(5x – 2)/(1 + 2x + 3x 2 ) dx se convierte en,

yo = ∫[5/6(2 + 6x) – 11/3]/(3x 2 + 2x + 1) dx

= 5/6∫(2 + 6x)/(3x 2 + 2x + 1) dx – 11/3∫dx/(3x 2 + 2x + 1)

= 5/6 log⁡(3x 2 + 2x + 1) – 11/(3 × 3)∫dx/(x 2 + 2/3x + 1/3) + c

= 5/6 log⁡(3x 2 + 2x + 1) – 11/9∫dx/(x 2 + 2/3 x + (4/3) 2 + 1/3 – (4/3) 2 ) + c

= 5/6 log⁡(3x 2 + 2x + 1) – 11/9∫dx/((x + 1/3) 2 +(√2/3) 2 ) + c

= 5/6 log⁡(3x 2 + 2x + 1) – 11/9 × 1/(√2/3) tan -1 (((x + 1/3)/(√2/3))] + C

Por lo tanto, I = 5/6 log⁡(3x 2 + 2x + 1) – 11/(3√2) tan -1 ⁡[(3x + 1)/√2] + C

Publicación traducida automáticamente

Artículo escrito por anandchaturvedirishra y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *